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Abstract

The vast majority of animals mate more or less promiscuously. A few mammals, including humans, utilize more
restrained mating strategies that entail a longer term affiliation with a single mating partner. Such pair bonding
mating strategies have been resistant to genetic analysis because of a lack of suitable model organisms. Prairie voles
are small mouse-like rodents that form enduring pair bonds in the wild as well as in the laboratory, and
consequently they have been used widely to study social bonding behavior. The lack of targeted genetic approaches
in this species however has restricted the study of the molecular and neural circuit basis of pair bonds. As a first step
in rendering the prairie vole amenable to reverse genetics, we have generated induced pluripotent stem cell (IPSC)
lines from prairie vole fibroblasts using retroviral transduction of reprogramming factors. These IPSC lines display the
cellular and molecular hallmarks of IPSC cells from other organisms, including mice and humans. Moreover, the
prairie vole IPSC lines have pluripotent differentiation potential since they can give rise to all three germ layers in
tissue culture and in vivo. These IPSC lines can now be used to develop conditions that facilitate homologous
recombination and eventually the generation of prairie voles bearing targeted genetic modifications to study the
molecular and neural basis of pair bond formation.
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mechanisms. The neuropeptide hormones oxytocin and vasopres-
sin mediate pair bonding behaviors in voles, and these hormones
have also been implicated in social attachment-type behaviors in

Introduction

Most animals exhibit transient affiliative behaviors with other

members of their species. In a few mammalian species, such
interactions lead to the formation of enduring social attachments
that, in humans, include pair bonds between mating partners,
biparental care of young, and kinships based on family or shared
interests [1-3]. The traditional genetic model organisms, including
mice, zebrafish, fruitflies, and nematodes do not form social
attachments, thereby precluding molecular genetic approaches to
study these striking behaviors [4,5]. By contrast, prairie voles
(Microtus ochrogaster) exhibit many forms of social attachment that
resemble those observed in humans [6]. These rodents form
socially monogamous pair bonds between mating partners who
also exhibit biparental care of young, incest avoidance, and
frequent aggressive rejection of other mating partners. In addition,
experimental separation of pair bonded individuals elicits physi-
ological signs of stress and elevated anxiety-like behaviors [7].
The behavioral analogy between social attachments in prairie
voles and humans appears to extend to the underlying regulatory
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humans [6,8—15]. Thus, prairie voles provide a valuable model to
study the molecular and neural circuit basis of pair bonding and
other forms of social attachment. Reverse genetic approaches to
modify genetic loci in a targeted fashion would greatly facilitate the
study of the molecular and neural circuit basis of pair bonding and
its associated affiliative behaviors in prairie voles.

Targeted genetic modification in mammalian systems requires
the generation of germline competent pluripotent stem cells that
can be stably maintained in tissue culture and engineered via
homologous recombination [16]. Therefore, as an initial step
towards developing reverse genetic engineering in prairie voles, we
have employed a modified version of the four factor reprogram-
ming paradigm to generate eleven IPSC lines that bear the
cellular, molecular, and differentiation signature of germline
competent stem cells [17-22]. These prairie vole IPSC (PVi) lines
will greatly facilitate the development of targeted genetics in this
model organism.
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Results

Reprogramming prairie vole embryonic fibroblasts

We obtained prairie vole embryonic fibroblasts (PVEFs) from
gestation day 12—14 embryos using procedures previously used in
the mouse [23]. Reprogramming of PVEFs was initiated by viral
transduction of the four pluripotency-inducing transgenes (human
orthologs of Oct3/4, Sox2, Kif4, and c-Myc; Figure 1A) [20,22].
Although c-Myc enhances reprogramming in tissue culture, it also
increases the rate of tumorigenicity in chimeric animals generated
from IPSCs; in some experiments therefore, we also employed a
three factor (Oct3/4, Sox2, Klf4) reprogramming protocol to
determine if this would also yield IPSCs [21,24]. PVEFs did not
express the receptor (Slc7al) required for infection with the
ecotropic retrovirus used to transduce cells with the reprogram-
ming factors. To enable transgene delivery in PVEFs, we therefore
infected these cells first with an amphotropic lentivirus encoding
Slc7al followed by infection with the ecotropic retroviruses
separately encoding each of the reprogramming transgenes [20].
Expression of these reprogramming factors confers pluripotency
on every cell type obtained from lab mice under conditions that
are used for ES cell culture [25-27]. Although we observed colony
formation from PVEFs under these conditions, further character-
ization (see below) revealed that none of these colonies contained
pluripotent stem cells. We reasoned that such failure could result
from poor expression of Slc7al in PVEFs, which would reduce the
probability of transducing single cells with each of the reprogram-
ming factor-encoding retroviruses required to induce pluripotency.
We therefore used high titer amphotropic retroviruses to transduce
PVEFs with the reprogramming transgenes [28]. Although we
observed .10-fold more colonies with this viral transduction
protocol, these colonies also did not contain any pluripotent stem
cells. Of 1500 colonies analyzed in standard ES culture media,
none yielded IPSCs (Table 1). These results indicate that
pluripotency-inducing genes elicit only partial reprogramming of
PVEFs grown in mouse ES cell culture media.

Many tissue culture media supplements have been reported to
enhance reprogramming induced by Oct3/4, Sox2, and Klf4 [29-
37]. Because none of the colonies obtained from PVEFs grown in
standard media yielded IPSCs following transduction with these
reprogramming factors, we also tested such tissue culture
supplements in an attempt to induce IPSCs (Figure 1A). None of
these supplements to standard ES cell culture media yielded IPSCs
(Table 1). In fact, many of these supplements were cell-lethal and
did not even elicit colony formation from PVEFs. Standard ES
media contains fetal bovine serum (FBS) and a recent commer-
cially available serum replacement (knockout serum replacement,
KSR) has been shown to enhance reprogramming when
substituted for FBS in culture media [31]. We therefore cultured
virally transduced PVEFs in KSR containing culture media in the
presence or absence of various non-toxic supplements. Most of
these conditions yielded colonies that contained pluripotent stem
cells (Table 1). The media supplements 3iM and 3iR (see Methods
for ingredients of 3iM and 3iR) enhance reprogramming in mice
and rats, respectively. However, neither supplement increased the
number of colonies obtained from PVEFs bearing the reprogram-
ming transgenes (Table S1). Nevertheless, culture medium
supplemented with 3iM or 3iR did yield bona fide IPSCs, with
3iR leading to a slight increase in the number of lines compared to
medium containing 3iM (p,0.03, Chi-squared test; Table 1). In
summary, of 1300 colonies analyzed in KSR-containing media, 11
yielded IPSC lines that fulfilled the standard cellular and
molecular criteria for pluripotency. Importantly, these 11 IPSC
lines (PVil-11) were generated from three independent prepara-
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Figure 1. Induction and characterization of PVi lines. (4) Protocol
for reprogramming PVEFs. All brightfield and immunolabeling images
(B, C, E-J) depict colonies of a single representative PVi line (line 6). (B-
C) Colony morphology of a PVi line. Colonies display morphology
similar to that of mouse ES cells, including distinct raised colonies (B),
with tightly-packed cells and well-defined, phase-bright margins (C). (D)
RT-PCR for endogenous reprogramming factors in PVi lines. RT-PCR for
pv-Nat1 was performed as a positive control for an endogenous,
ubiquitously expressed gene that should be expressed in all cells
irrespective of their reprogramming state. Lanes 1-11 show PCR
products from PVi lines 1-11, respectively. Lane 12 (“F") shows PCR
products from PVEFs. (E) PVi colony exhibiting alkaline phosphatase
(Alk. phosphatase) activity. (F) Live immunofluorescent labeling of a PVi
colony for SSEA-1. (G-J) Immunofluorescent labeling of PVi colonies for
Nanog, Oct3/4, Kif4, and Sox2. Scale bars equal 500 mm (B), 100 mm (C,
E), and 50 mm (F-)).

doi:10.1371/journal.pone.0038119.g001

tions of PVEF cells that were obtained from distinct prairie vole
breeding pairs, with individual PVEF preparations yielding 2, 4,
and 5 IPSC lines. Moreover a majority (3 of 4) of such PVEF
preparations yielded IPSC lines, indicating that PVEF's represent a
reliable source of reprogrammable cells in prairie voles.
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Table 1. Identification of culture conditions that
promote generation of PVi lines.

Colonies

Culture conditions Colonies  picked PVi lines
FBS+LIF Yes 1025 0
FBS+LIF+5-aza-cytidine* No
FBS+LIF+MAPK/ERK inhibitor PD98059* No
FBS+LIF+ROCK inhibitor Y27632* No
FBS+LIF+bFGF+Activin A No
FBS+LIF+3iM Yes 275
FBS+LIF+3iR Yes 200
KSR+LIF Yes 500 3
KSR+LIF+bFGF+Activin A No
KSR+LIF+3iM Yes 400 1
KSR+LIF+3iR Yes 400 7

Total 2800 11

Successful reprogramming of PVEFs into PVi lines was observed when FBS
was replaced with KSR. For constituents of the 3iM and 3iR cocktails,
which modulate distinct signal transduction pathways, please see
Materials and Methods.

* these supplements were either cell lethal or prevented colony formation.
doi:10.1371/journal.pone.0038119.t001

Characterization of colonies obtained from
reprogrammed PVEFs

We first observed cellular aggregates 2—3 weeks subsequent to
viral transduction of pluripotency-inducing transgenes into
PVEFS. Many of these aggregates resulted in large phase bright
colonies by 4-5 weeks, and we picked these for further expansion
(Figure 1A—C). In general, colonies obtained in FBS-containing
media usually had a phase-bright cobblestone appearance and
their boundaries were often not sharply demarcated from the
feeder cells. By contrast, KSR-containing media promoted the
growth of colonies that resembled mouse ES colonies such that
they had a smooth phase-bright appearance and a sharp border
that clearly distinguished them from the underlying feeder cells
(Figure 1B, C). We expanded all colonies such that they could
eventually populate individual wells (9.5 cm? surface area) of a 6-
well plate. At this point, a subset of the cells within each well was
frozen and the remainder was subjected to molecular character-
ization of the reprogrammed state. We tested each cell line for
molecular hallmarks of pluripotency in a predetermined sequence
such that colonies that did not meet a criterion were not analyzed
further [17,30]. We first tested colonies for expression of Nanog,
an essential signature of the pluripotent state, by RT-PCR
(Figure 1D) [38]. Persistent expression of the virally transduced
reprogramming factors precludes subsequent differentiation and
contribution to chimeric animals [18,39]. We therefore utilized
RT-PCR to identify the Nanog+ colonies that had switched off
expression of these transgenes (Figure S1). Pluripotent colonies
that silence expression of reprogramming transgenes maintain
their pluripotent state by switching on expression of endogenous
Oct3/4, Sox2, Klf4, c-Myc, and other molecular markers [17,18].
Given that the prairie vole genome has not been sequenced yet, we
verified endogenous expression of these genes using prairie vole-
specific PCR primers (Figure 1D). These results have subsequently
been validated using RT-quantitative PCR experiments, which
show that each of these genes is expressed at levels significantly
exceeding those observed in the parental PVEFs (Figure S2).
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Colonies were subsequently screened for alkaline phosphatase
activity with a fluorescent substrate and for expression of SSEA-1
by immunolabeling (Figure 1E, F) [19]. Although expression of
alkaline phosphatase or SSEA-1 is not exclusive to the pluripotent
state, the cellular assays used to detect these markers afford a
sensitive means to detect any heterogeneity within reprogrammed
colonies. All IPSC lines were also screened for homogeneous
expression of Nanog, Oct3/4, KIf4, and Sox2 using immunolabel-
ing (Figure 1G-J). Our final criteria were formulated by practical
considerations. Any IPSC line that will be used for gene targeting
must have the capacity for expansion for several generations in
tissue culture and the ability to be thawed from frozen stocks for
additional manipulations. Each of our validated IPSC lines
displays these traits and has been expanded for .8 generations
in tissue culture. Cell populations from pluripotent stem cell lines
eventually consist of many cells that are aneuploid as a
consequence of repeated passage in tissue culture [40—42], and
we have therefore maintained a frozen stock of our validated IPSC
lines at low passage numbers (passage numbers 6—8). Extensive
aneuploidy in ES or IPSC lines precludes efficient contribution to
the chimera and germline [41,43—45]. We therefore karyotyped
our vole IPSC lines and determined that $70% of cells within
each line were euploid (Table S2; In = 27 in prairie voles), a
degree of euploidy that exceeds the minimum required for
chimera generation and germline transmission with mouse ES
cells [41,46]. In summary, these cellular and molecular criteria are
indicative of the pluripotent nature of the 11 IPSC lines we have
obtained by reprogramming fibroblasts from the prairie vole.

Vole IPSC lines have pluripotent differentiation
capacity in tissue culture and in vivo

We next wished to determine whether these reprogrammed
prairie vole cells exhibit the potential to differentiate into cell types
of all germ layers. Accordingly, we first tested the capacity of our
vole cell lines to form embryoid bodies in tissue culture. We
therefore performed suspension cultures of colonies from each
reprogrammed prairie vole cell line that displayed the cellular and
molecular characteristics of pluripotency. These colonies were
grown in differentiation conditions until we observed the
formation of spherical, often largely phase-dark, lobulated cysts
(Figure 2A, B) that resembled mouse embryoid bodies. These cysts
were tested for the expression of markers of all germ layers using
RT-PCR. These studies revealed the expression of markers of the
endoderm (Hnf4, Tie2, or Sox17), ectoderm (Sox1, Kerl8, Pax6,
or GFAP), and mesoderm (T, Gata4, AFP, or Flk-1) in each of 11
reprogrammed cell lines (Table 2). We also observed expression of
Vasa, a marker of germ cell lineages [47], indicating that many of
these lines form embryoid bodies with germ cell differentiation
even in tissue culture.

In order to determine whether reprogrammed vole cells could
differentiate into all three germ layers in vivo, we determined their
ability to form teratomas. We therefore injected 103-10° cells from
individual lines subcutaneously into immunocompromised mice
(NOD/SCID). Each of the 11 lines that generated embryoid
bodies in vitro produced large, visible subcutaneous tumors within
3 weeks of implantation (Figure 2C). These tumors were dissected
and analyzed for differentiation into various cell types using
standard histological criteria. Tumors from all 11 lines contained a
diverse array of differentiated cell types of all germ layers
(Figure 2D-I), including mesoderm (skeletal muscle, smooth
muscle, fat cells), ectoderm (keratin and neural rosettes), and
endoderm (branched tubular formations resembling gut and other
lumenal epithelial structures). Taken together, our findings
demonstrate that we have reprogrammed prairie vole fibroblasts
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Figure 2. PVi lines are pluripotent in vitro and in vivo. (A-B) Differentiation of PVi lines in tissue culture yields embryoid bodies. (C) Teratoma
obtained following subcutaneous implantation of PVi cells (PVi3) into a NOD/SCID mouse. (D-/) Hematoxylin and eosin stained tissue from teratomas
obtained from PVi3 (D, F, H) and PVi6 (E, G, I) shows cellular differentiation into mesodermal, endodermal, and ectodermal lineages. Scale bars equal

100 mm (A, B, D-I).
doi:10.1371/journal.pone.0038119.g002

into cells that exhibit the cellular and molecular hallmarks of
pluripotency and that have the capacity to differentiate into all
major cell types in tissue culture and in vivo.

Discussion

We report the generation of prairie vole pluripotent stem cell
lines that exhibit the morphological and molecular hallmarks of
pluripotent IPSCs from other species. These PVi lines are also
functionally pluripotent since they can differentiate into all germ
layers in tissue culture and in vivo. Some of the requirements for
IPSC generation and propagation appear to be shared across
different animals, including prairie voles. Thus, the standard
reprogramming transgenes that have previously been shown to
induce pluripotency in diverse cell types in various species were
also effective in reprogramming prairie vole fibroblasts. In
addition, the presence of LIF was also essential for the generation
and maintenance of PVi lines. A surprising finding from our
studies is that many of the previously described small molecule
enhancers of reprogramming in other rodents either do not
stimulate pluripotency in prairie vole fibroblasts or they are cell
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lethal. Moreover, we find that the presence of fetal bovine serum
in culture medium inhibits the generation of pluripotent cells,
which were observed only in media in which serum had been
substituted with knockout serum replacement. Thus, prairie vole
cells require a distinct set of culture conditions to enable
reprogramming even in the presence of LIF and pluripotency-
inducing transgenes.

Prairie voles exhibit social attachment such that mating partners
are socially monogamous, prefer each other to strangers, and
exhibit distress upon separation. Such pair bonded voles also
exhibit biparental care of young, including alloparental care, and
incest avoidance [6,48]. These striking behaviors are observed not
only in the laboratory setting, but they are also exhibited in the
wild. It has been difficult to study the molecular and neural circuit
mechanisms underlying these behaviors because of the absence of
gene targeting in prairie voles. Moreover, such social attachment
behaviors are not observed in mice or other traditional genetic
model organisms. The PVi lines we have generated will greatly
facilitate the development of gene modification by homologous
recombination and the eventual generation of transgenic voles
bearing targeted genetic manipulations. Previous work has
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established a large repertoire of genetic tools that permit a
sophisticated understanding of the function of genes and cells in
vivo in mice, and it should be possible to use these tools to
characterize the basis for displays of social attachment.

Humans exhibit attachment behaviors at every level of social
interaction and there appears to be a striking similarity in the
molecular control of these behaviors between humans and prairie
voles [6,48,13]. Oxytocin and vasopressin have been shown to
influence social attachment in both species and future studies in
transgenic voles should enable the mapping of neural circuits that
respond to these neuropeptides. Disruption of social bonds is a
common feature of many mental illnesses, and an understanding
of the underlying neural circuits may permit novel therapeutic
interventions [9,10,49,50]. Few mammalian species exhibit social
attachment behaviors between adults, which likely represent
adaptive responses to unique ecological niches [51,52]. In fact,
many vole species such as montane and meadow voles do not
exhibit pair bonding [6]. Using comparative genomics [53,54],
transgenesis [55], and targeted genetic manipulations with the
prairie vole stem cells we report here, it will be possible to
understand not only the mechanisms whereby social attachment is
encoded in the brain, but also how evolution has shaped the
underlying neural circuits to enable different behavioral outcomes
in closely related species.

Materials and Methods

Isolation of embryonic fibroblasts

PVEFs were obtained from gestation day 12—14 embryos using
procedures identical to those described for obtaining mouse
embryonic fibroblasts (MEFs) [23]. Triturated tissue fragments
from 3—4 embryos were plated in a T150 flask (Corning) in MEF
medium: DMEM (4.5 g/L glucose) containing 15% FBS (Hy-
clone), 2 mM L-glutamine, 16 non-essential amino acids, 16
nucleosides, 16 2-mercaptoethanol and 16 penicillin/streptomy-
cin. This initial plating of cells and tissue fragments was cultured
until confluent (3—4 days) and then dissociated into a single cell
suspension with Trypsin/EDTA. These cells were frozen (16
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Table 2. PVi lines are pluripotent in tissue culture.

EBs derived from  Lineage markers
Ectoderm Endoderm Mesoderm Germ-line
Gfap Ker18 Pax6 Sox1 Hnf4 Sox17 Tie2 Afp Flk1 Gata4 T Vasa

PVi1 + + + + + + +

PVi2 + + + + + + +

PVi3 + + + + + + + + +

PVid + + + + + + + + +

PVi5 + + + + + + +

PVi6 + + + + + + + +

PVi7 + + + + + + + +

PVi8 + + + + + +

PVi9 + + + + +

PVi10 + + + + + +

PVil1 + + + + + +

PVi lines generate embryoid bodies (EBs) that contain cell types representing all 3 somatic germ layers as revealed by RT-PCR for molecular markers of

ectoderm, endoderm, and mesoderm. This analysis also shows that embryoid bodies from many PVi lines contain Vasa-expressing cells, thereby suggesting

the presence of germ cells.

doi:10.1371/journal.pone.0038119.t002

freezing medium) and subsequently used for IPSC induction or
they were expanded further by 1-2 passages, treated with
Mitomycin C (Sigma; or irradiated) to induce cell cycle arrest,
and frozen for later use as feeder cells. We also prepared feeder
cells from MEFs using this protocol. All media and supplements
were from Millipore except when otherwise noted. Animals were
handled and maintained in accordance with IACUC protocols at
UC San Francisco and UC Davis.

IPSC induction with reprogramming transgenes
delivered by ecotropic retroviruses

Lentivirus encoding mouse Slc7al receptor was generated by
using Fugene (Roche) to transfect HEK293T cells (ATCC) with
pMD.G, p8.91, and pLenti6/UbC-Slc7al as described previously
[20]. In brief, the cells were cultured in DMEM containing 10%
FBS and 16 penicillin/streptomycin and the medium was
changed every day. Supernatant was collected from the cells 48
and 72 hours following transfection, pooled, passed through a
0.45 mm filter (Corning), and used to transduce PVEFs. Ecotropic
retroviruses encoding Egfp, and the human orthologs of c-Myc,
Klf4, Oct3/4, and Sox2 were generated in PLAT-E packaging cells
(gift from Dr. Shinya Yamanaka lab) as described previously [22].
PLAT-E cells were plated at 8610° cells/10 cm dish in the same
medium as HEK293T cells, and they were transfected the next
day with plasmids bearing Egfp or the individual reprogramming
transgenes (pMXs vectors, Addgene) using Fugene. Supernatant
was collected as described above. To initiate reprogramming,
PVEFs were plated at 86103 cells/10 cm dish in MEF medium
and infected the next day with Slc7al-encoding lentivirus
supernatant supplemented with 4 mg/mL polybrene (Sigma).
These cells were trypsinized 48 hours later and replated at the
original density on a 10 cm dish containing growth arrested
feeders (PVEFs or MEFs). Equal volumes of supernatants
containing each of the 5 retroviruses were mixed, supplemented
with 4 mg/ml polybrene, and transferred to the dishes containing
PVEFs. Following an overnight incubation in these supernatants,
the medium was replaced with ES medium (MEF medium
supplemented with 5% FBS and 1000 U/mL LIF) and changed
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daily until colonies were picked. In some experiments, FBS was
replaced by 15% KSR (Invitrogen) in the ES medium.

IPSC induction with reprogramming transgenes
delivered by amphotropic retroviruses

PVEFs were plated in MEF medium at 3610 cells/well of a 6-
well plate on 0.2% gelatin 1 day prior to transduction. PVEFs
were infected with amphotropic retroviruses encoding Venus Egfp
(6610% TU/mL) and the human orthologs of Oct3/4 (46108 TU/
mL), Sox2 (1610% IU/mL), KIf4 (46108 IU/mL), c-Myc
(2610% TU/mL) (packaged by Harvard Gene Therapy Initiative)
such that the culture medium contained 1 mL/mL of each
retrovirus and 4 mg/mL polybrene [28]. The transduced cells
were fed fresh MEF medium each day for 2 days after viral
transduction, following which the medium was replaced with ES
medium. The cells were also provided with fresh ES medium every
24-48 hours.

Media supplements

The cocktail 3iM [37] contained inhibitors to GSK38 (3 mM;
CHIR99021, Stemgent) and MEK (0.8 mM; PD184352, Santa
Cruz), and an FGF receptor antagonist (100 nM; PD173074,
Stemgent). The cocktail 3iR [35] contained inhibitors to GSK38
(3 mM; CHIR99021, Stemgent) and ERK (1 mM; PD0325901
Stemgent), and a TGFB type I receptor antagonist (0.5 mM; A-83-
01, Stemgent). Basic FGF (Invitrogen) and activin-A (Invitrogen)
were used at 20 ng/mL each [56].

RNA isolation and PCR

Total RNA was isolated with the RNeasy Mini Kit (Qiagen)
according to the manufacturer’s protocol. All RNA samples were
treated with DNase I (Amplification grade, Invitrogen) and reverse
transcribed into cDNA using Superscript III (Invitrogen) and
oligo-dT primers according to the manufacturer’s protocol. gPCR
reactions was performed either on an ABI Prism 7100 or an ABI
7900HT (Applied Biosystems). All primers used are listed in Table
S3.

Immunolabeling and staining for alkaline
phosphatase

Cells for immunolabeling were grown on glass coverslips, rinsed
with D-PBS, fixed at room temperature for 10 min in ice-cold 4%
paraformaldehyde (PFA), and rinsed again with D-PBS. For
immunolabeling, the cells were incubated in block buffer (D-PBS,
5% donkey serum, 0.1% Triton X-100) for 1 hour at room
temperature. The cells were exposed to primary antibody in
labeling buffer (D-PBS, 0.5% donkey serum, 0.1% Triton X-100)
overnight at 4uC, rinsed 3 times in labeling buffer at room
temperature, and incubated in labeling buffer containing the
fluorophore-conjugated secondary antibody for 1 hour at room
temperature. The cells were rinsed several times and the coverslips
mounted on glass slides using Vectashield (Vector). The primary
antibodies used were polyclonal rabbit anti-Oct3/4 (Santa Cruz,
1:50), anti-K1f4 (Santa Cruz, 1:100), anti-Sox2 (Millipore, 1:1000),
anti-Nanog (Abcam, 1:60), and mouse anti-SSEA1 (DSHB, 1:100).
The secondary antibodies used were Cy3-conjugated donkey anti-
rabbit (Jackson, 1:800) and Alexa 488-conjugated donkey anti-
mouse (Molecular Probes, 1:300). Alkaline phosphatase staining
was performed on fixed cells using the Vector Red Alkaline
Phosphatase Substrate Kit I (Vector Labs) according to manufac-
turer’s protocol.
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Karyotyping

Cells were grown to 70% confluence, trypsinized, and incubated
in 0.56% KCl at 37uC for 10 min. Cells were rinsed in 3:1 ice-cold
methanol:glacial acetic acid 3 times, and dropped on to glass slides
to generate chromosome spreads. These spreads were stained with
Leishmann’s stain for 8 min, rinsed with water, cleared twice in
xylene, and mounted in Depex (EMS). Chromosomes were
enumerated from $15 cells with well-delineated spreads for each
cell line.

Embryoid body generation

IPSC lines grown to 80% confluence were trypsinized until the
colonies detached. The tissue culture dish was flooded with MEF
medium and the colonies were transferred to an ultra-low
adherence dish (Corning) to promote differentiation into embryoid
bodies. MEF medium was changed every 3—5 days until embryoid
bodies were observed at 3—5 weeks.

Teratoma generation

Vole IPSCs were injected subcutaneously into the flanks of
NOD/SCID mice. Tumor nodules were removed after 4—6 weeks,
fixed overnight in 4% PFA at 4uC, and embedded in paraffin. The
samples were sectioned at 20 mm thickness and stained with
hematoxylin and eosin.

This study was carried out in strict accordance with the
recommendations in the Guide for the Care and Use of
Laboratory Animals of the National Institutes of Health. The
protocol was approved by the Institutional Animal Care and Use
Committee of the University of California, San Francisco
(Approval Number: AN081802-03B). All animals were sacrificed
under carbon dioxide followed by decapitation, and all efforts
were made to minimize suffering. All prairie vole cell lines (PVEFs
and PVi) generated and used in this manuscript were generated
from harvested tissue according to the protocol approved by the
Institutional Animal Care and Use Committee of the University of
California, San Francisco (Approval Number: AN081802-03B).

Supporting Information

Figure S1 PVi lines silence exogenous reprogramming
factors. RT-qPCR shows silencing of transduced reprogramming
factors relative to that of an unsilenced line. All PVi lines show
lower expression of exogenous Oct3/4, Kif4, and c-Myc that is
statistically significant relative to the unsilenced line (p,0.05, Chi-
squared test).

(DOC)

Figure S2 PVi lines express endogenous markers of
pluripotency. (4-F) RT-qPCR shows expression of
endogenous prairie vole (pv) Nanog, Oct3/4, Sox2, KIf4, and c-Myc in
all PVi lines and minimal expression of these genes in the PVEF
cells. Shown are fold changes in expression of each gene in the
indicated cell line relative to the mean expression of the gene in
all PVi lines. The mean expression of each gene in PVi lines vastly
exceeded the expression level in PVEFs (pv-Nanog, 1.9610* fold;
pv-Oct3/4, 2.1610* fold; pv-Sox2, 4.6610° fold; pv-Kif4, 1.8610°
fold; pv-c-Myc, 1.26103 fold). Note that the expression of each
gene was normalized to that of GAPDH and the data represent
results from two technical replicates of RT-qPCR for each cell
line.

(DOC)

Table S1 Media supplements do not enhance colony
formation from PVEFs. The media supplements 3iM, 3iR, or
FA (bFGF+Activin) do not increase the number of colonies formed
from PVEFs compared to basal culture conditions in 15% FBS or
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15% KSR. Numbers in parentheses indicate the number of PVi
lines generated. All media contained LIF. Fold induction = (#
colonies in media supplement)/(# colonies in basal conditions);
n =3 for each condition. OSK: viral transduction of Oct3/4,
Sox2, and Klf4. OSKM: viral transduction of Oct3/4, Sox2, KIf4,
and c-Myec.

(DOC)

Table S2 Karyotype analysis of PVi lines. Metaphase
chromosome spreads from each PVi line were enumerated to
quantitate the degree of euploidy (1n=27).

(DOC)
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