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Abstract

The sexual differentiation of the mammalian nervous requires the precise coordination of the
temporal and spatial regulation of gene expression in diverse cell types. Sex hormones act at
multiple developmental time points to specify sex-typical differentiation during embryonic and
early development and to coordinate subsequent responses to gonadal hormones later in life by
establishing sex-typical patterns of epigenetic modifications across the genome. Thus, mutations
associated with neuropsychiatric conditions may result in sexually dimorphic symptoms by acting
on different neural substrates or chromatin landscapes in males and females. Finally, as stress
hormone signaling may directly alter the molecular machinery that interacts with sex hormone
receptors to regulate gene expression, the contribution of chronic stress to the pathogenesis or
presentation of mental illness may be additionally different between the sexes. Here, we review the
mechanisms that contribute to sexual differentiation in the mammalian nervous system and
consider some of the implications of these processes for sex differences in neuropsychiatric
conditions.
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Many psychiatric conditions display a sex bias in incidence, onset, or symptoms; however,
the underlying mechanisms that lead to these sex differences are still obscure. Here, we
consider some of the levels of development and mechanisms of gene regulation in which
sex-specific processes may contribute to sexual dimorphisms observed in mental illness,
with a focus on gene regulation and epigenetic mechanisms. We first describe early
behavioral sex differences in humans, focusing on two early-presenting disorders that are
diagnosed more frequently in males: autism spectrum disorder (ASD) and attention-deficit/
hyperactivity disorder (ADHD). We next consider the developmental events that give rise to
sex differences in the brain and discuss gene regulatory mechanisms that may underlie the
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persistent effects of these processes on brain function. We then explore how similar genetic
risks for ASD and schizophrenia could be invoked in either early life or adolescence,
resulting in the distinct trajectories seen in these two conditions. We propose that the
intersection between the gene programs that regulate sex-specific development and function
in the brain and those that are disrupted in the context of psychiatric illness can significantly
influence the pathogenesis and presentation of most neuropsychiatric conditions.

Sex differences in human behavior and neurodevelopmental disorders

Before considering the molecular mechanisms through which pathways for sexual
differentiation may intersect with genetic and environmental factors that contribute to
psychiatric illness, we first consider a few examples in which early sexual differentiation of
the nervous system manifests in early differences in behavior between boys and girls. Not
surprisingly, these differences appear in the context of both normal development and in the
early presentation of neuropsychiatric conditions.

Little debate exists as to the effects of cultural influences on the early aspects of sex-typical
behavior in children. Indeed, the dichotomy of nature versus nurture and their distinct
contributions to sex-typical development and behavior is generally acknowledged as false,
and human sex-typical behaviors are considered to be the result of dynamic interactions
between pre- and postnatural biological factors as well as a child’s social milieu (reviewed
in Refs. 1-3). At the earliest stages of life, consistent differences in behavior and neurologic
development appear between boys and girls. Infant girls appear to have more intense and
expressive reactions to painful stimuli.1:2 Male infants appear to track objects more
consistently in an event-mapping task.2:3 Intriguingly, while both infant boys and girls attend
more to female faces, no significant difference in eye-tracking of social stimuli appears
between in the sexes in healthy infants.3-> Such differences reflect only a few of the likely
innate differences in neural function between infant boys and girls. Nevertheless, they
illustrate the perhaps intuitive conclusion that, like other mammals, embryonic and early
developmental programs regulated by sex hormones result in innate differences between the
sexes that are present at the earliest stages of life.

While the consequences of such differences for normal development remain unknown,
though actively explored, they likely contribute to differences in presentation seen in
pediatric neuropsychiatric conditions. Two examples serve to illustrate how, in addition to
likely sex differences in the molecular pathogenesis of such disorders (discussed below),
innate sex differences in behavior likely also contribute to the differences in symptoms
observed between boys and girls. ASD is diagnosed nearly four times more often in boys
than in girls.5=9 In addition to this overall sex difference, the presentation of ASD also
differs between boys and girls. While many studies have documented a higher incidence of
intellectual impairment in girls with ASD compared with boys, some debate exists as to
whether the overall severity of ASD differs between them.10 Differences between the
presentation of boys and girls with ASD reflect biological differences in symptoms, which
may also contribute to biases in reporting and attention. Externalizing behaviors, such as
aggression, repetitive behaviors, restricted interests, reduced prosocial behavior, and
hyperactivity tend to occur more prominently in males, while females with ASD have more
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internalizing symptoms, including anxiety, depression, and self-oriented emotional
disruption, that are often only reported by parents.1%-12 As a consequence of these potential
differences in presentation, ASD in boys is more likely to come to attention due to disruptive
behaviors in school or at home, thereby skewing the bias in prevalence even further. Sex
differences in innate responses to stimuli or patterns of emational expressivity likely
contribute to distinct presentation of these disorders. Indeed, sex differences in patterns of
cognition, in particular specific dimensions of social cognition and abstract reasoning
associated with identifying rules and patterns within systems, led to the hypothesis that
domains of autistic symptoms may arise from an extreme masculinization of the brain in
autistic patients.13 Nevertheless, despite many efforts to determine if prenatal exposure to
increased levels of androgens is associated with ASD, no causal mechanisms have been
established linking sex hormone signaling to ASD.1415 However, it is worth noting that such
a relationship has been repeatedly supported, linking elevated levels of umbilical cord
testosterone to language delays in children, suggesting that, in specific contexts likely
determined by diverse genes affecting sensitive aspects of CNS development, sex differences
in developmental pathways may contribute to patterns of symptoms that children present.16
Additional mechanisms may mediate sex differences in the sensitivity to genomic disruption
or the consequences of ASD mutations for neural development.

Given the innate differences between the sexes in the presentation or pathogenesis of most if
not all psychiatric conditions, it is worth considering whether a re-evaluation of the criteria
for those particularly diagnosed in childhood may be warranted. For example, in ASD, aside
from specific core deficits in social cognition and emotion processing, other patterns of
symptoms used to establish diagnostic criteria may vary between the sexes. Further
investigation of sexual dimorphisms in phenotypes resulting from disease-associated
mutations will be central to such refinements in clinical criteria.

Extreme sex biases in the diagnosis of ADHD have been observed, such that boys can
outnumber girls by up to 10:1, though meta-analyses and population-based studies suggest
that this ratio is likely closer to 4:1.17-19 Intriguingly, sex differences in the prevalence of
ADHD appear highest during childhood and become significantly less pronounced later in
life.2021 As with ASD, given that the pattern of symptoms of ADHD manifested by boys
more strongly correlates with conduct disorder and disruptive behaviors, parents or teachers
are more likely to bring these cases to attention. Consistent with a model in which females
are more likely to manifest comorbid distress or disorders with internalizing symptoms, girls
are typically diagnosed later in childhood than their male counterparts.22 However, in
addition to sex differences in overall prevalence rate, the distribution of subtypes or patterns
of associated phenotypes also appears to differ between the sexes, with a larger percentage
of females (45-60%) presenting as inattentive compared with males (35-50%).17:23 Thus,
innate sex differences in the circuits regulating attention or behavioral inhibition may
underlie the presentation of ADHD, as well as other neuropsychiatric conditions. Indeed, it
has been observed that boys with ADHD exhibit deficits in behavioral inhibition, while girls
tend to display impairments in planning.24 Given that the extent and pattern of sex
differences in ADHD-associated symptoms appear to decrease with age into adulthood, it is
interesting to speculate that, despite innate differences in neural circuits underlying attention
and behavioral inhibition, the developmental pathways activated during adolescence
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(discussed below) normalize these differences and restructure such circuits to participate in
behavioral processes common to both sexes in adults, while distinct pathways elaborate the
sexual dimorphisms in behavior and pathology seen in later in development.

Independent of the societal factors that likely skew the diagnoses of these two syndromes,
the male bias of ASD and ADHD prevalence and the distinct patterns in which boys versus
girls present with these disorders suggest that innate sex differences in the brain are likely
programmed during the earliest stages of development and contribute to sex differences in
the symptoms observed. We now turn to the molecular mechanisms that mediate the sexual
differentiation of the mammalian nervous system and discuss how these pathways may be
altered to give rise to sex differences in the pathogenesis of neuropsychiatric conditions.

Sexual differentiation of the brain is regulated by gonadal hormones

Much of our knowledge about the cellular and molecular differences between the sexes in
the mammalian brain has been obtained through studies of the hormonal regulation of the
differentiation and function of neural circuits underlying innate, sex-typical behaviors and
physiology in rodents, particularly sexual behavior and territorial aggression. The neural
circuitry that controls these behaviors develops under the control of gonadal hormones.25-29
Male mice undergo a surge of testosterone at birth that subsides within hours.3%:31 This
circulating testosterone is directly converted to estradiol in the brain by aromatase.32:33
Estradiol is the primary endogenous estrogen, although estrone and estriol also bind estrogen
receptors; here, we primarily use the general term estrogen for simplicity. Pharmacological
and genetic experiments have demonstrated that this brain-derived perinatal estrogen is the
primary driver of sexual differentiation of the brain and permanently establishes sex-typical
differences in the structure and function of the neural circuitry that mediates sex-specific
behaviors in the adult.28:34-36 Females given estradiol at birth display male-typical fighting
behavior as adults with no additional hormone supplementation.3” This sensitivity to
estradiol is lost by the second postnatal week.38-40 Although sex differences in neural
circuitry are specified during this postnatal critical period, sex-typical behaviors are not
displayed until puberty, when the male testes produce testosterone and female ovaries make
estrogens and progesterone. These hormones are acutely required in adult life: gonadectomy
abolishes mating and aggression, but the circuit structure remains intact and behaviors can
be restored by exogenous hormones. Although testosterone is the primary driver of adult
male-typical behaviors, estradiol alone can restore some mating and territorial behaviors.
41-44 Therefore, estrogen acts to both modulate postnatal male-typical circuit development
and to “activate” circuits for sex-typical behaviors in adulthood.

In addition to its masculinizing effects on behavior, perinatal estrogen is known to give rise
to anatomic and molecular sex differences. Many excellent reviews have summarized
findings on cellular and neuroanatomic sex differences, including cell number, neural
projections, and spine number.27:3445-48 Sex differences in gene expression in the brain
have also been described in both rodents and humans.43-56 Although estrogen is the primary
driver of sexual differentiation in rodents, both estrogen and testosterone signaling are
required for full masculinization of adult behaviors. Male mice mutant for androgen receptor
(AR), the receptor for testosterone, show decreased spatial memory, increased anxiety,
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decreased play fighting, and reduced sexual and territorial behaviors.57:58 Loss of estrogen
signaling, either through gonadectomy or mutation of estrogen receptors, increases anxiety
in mice 59,60

in mice.>

In humans, however, it appears that brain masculinization occurs largely through
testosterone signaling, rather than estrogen. Human males with mutations in CYP19A1, the
gene for aromatase, cannot synthesize estrogen, yet present as normal males. Men with
aromatase deficiency experience sustained linear growth rather than a pubertal growth spurt
and epiphyseal closure, demonstrating that estrogen is required in males for proper skeletal
maturation.5? In contrast, AR function is essential for phenotypic and behavioral
masculinization of human males. Patients with an XY karyotype and a complete loss of AR
function have complete androgen insensitivity syndrome (CAIS), present as women, and
have female-typical brain morphology.52 Humans also experience developmental
testosterone surges; though consistent with the scaling of natal development, they are much
more prolonged than those in rodents. The testes begin to secrete testosterone around week 7
of gestation, with maximal levels between weeks 8 and 24.63.64 Human brain at mid-
gestation is similar to mouse brain at birth with regard to staging of cortical development.
65.66 The timing of developmental hormone surges is thus somewhat conserved between
rodents and humans: the mid-gestation testosterone surge in humans is concordant with the
perinatal surge in mice and rats. Human males also experience an additional surge in infancy
that peaks between months 1 and 3.57:68 Female ovaries are also known to be active during
infancy, but the levels of estradiol are variable, and the time course of its secretion has not
been well described.8-70 The timing of these increases in gonadal hormone levels intersects
with neural development so that male and female brains have very different internal states
during neurogenesis, neuronal migration and synaptogenesis (Fig. 1). Consequently, it is not
surprising that, like the myriad dimorphisms observed in rodents due to the postnatal
testosterone surge, humans also demonstrate innate differences during fetal and infant
development between the sexes.”1.72

Sex chromosomes and brain development

Sex chromosomes also contribute to sexual differentiation of the brain, both directly through
their own genetic content and indirectly through regulation of gonadal development
(reviewed in Refs. 73-76). Sex chromosome aneuploidies are some of the most common
genetic disorders in humans, affecting nearly 1/400 live births.”” These disorders are
associated with cognitive and behavioral symptoms, particularly social skills and motor
abilities.”® Notably, language and spatial abilities appear to correlate with sex chromosome
dosage; females with X monosomy show normal or increased verbal and lexical abilities and
visuospatial deficits, while individuals with sex chromosome polysomy have language
impairments that increase with the number of chromosomes, while spatial skills are often
enhanced.””~79 Brain imaging studies have identified a relationship between sex
chromosome dosage and brain volume’” and highlight specific chromosomal effects in
cortical® and subcortical®1:82 brain areas. Mouse models of sex chromosome aneuploidies
have been used to discern the effects of sex chromosomes on specific behaviors, including
social behaviors, anxiety, feeding, and nociception.”* The most widely used model is that of
the “four core genotypes.” This system employs two modified alleles of the testis-
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determining Sry gene; one where Sry has been deleted from the Y chromosome, resulting in
genetic males that resemble females, and another where Sry has been inserted on an
autosome to generate XX animals that develop testes.83 Comparison of these mutants with
wild-type XX and XY animals thereby permits the dissociation of sex chromosome
complement and gonadal development.

Similar to Sry, the few other genes on the Y chromosome are primarily specialized for testis
determination and spermatogenesis.84 Gene products such as DDX3Y, UTY, and KDM5D
are abundant in the brain, but their neural functions have not been elucidated.>1.85-87 |n
contrast, the X chromosome is enriched for genes that control brain function; 40% of the
genes on the X are expressed in the brain, and X-linked gene expression is higher in the
brain of both sexes compared with other tissues.88-91 As the X chromosome is also the most
rapidly evolving mammalian chromosome, it has been suggested that this enrichment of
neural-expressed genes is a consequence of natural selection for increased cognitive
abilities.88:92-94 Consequently, X-linked mutations are a leading cause of intellectual
disability, a condition that is more prevalent in boys than girls.89:93.94 As female cells
achieve dosage compensation through stochastic inactivation of one X chromosome (XClI),
females are buffered from the effects of deleterious X mutations.?>96 A recent analysis of
XCI in diverse human cell types and tissues established that the extent of X inactivation
varies within and between individuals and is often incomplete.®’ In brain, excitatory and
inhibitory neurons show different patterns of clonal XCI mosaicism within a cortical column
owing to their different developmental migration patterns. Excitatory neuron XCI is
heterogeneous with high variance within and between individuals, while inhibitory neurons
show equal, fine-grained inactivation patterns, suggesting that any heterozygosity for an X-
linked gene would affect excitatory circuitry only in specific clonal areas, but all inhibitory
circuits would be affected equally.%8

What genes on the X or Y chromosomes are contributing to sex differences in brain
development and function? Histone lysine demethylases are intriguing candidates, as they
can induce broad, persistent effects on gene expression. Kaméa/Utx and Kdmbc/SMCX are
known escapers of X-inactivation, resulting in increased expression of these epigenetic
regulators in the brains of females. Mutations in KDM5C have been implicated in a variety
of neurodevelopmental disorders, including intellectual disability, ASD, and cerebral palsy.
99,100 Mice lacking Kam5ce display increased aggression, decreased anxiety, impaired motor
coordination, and decreased dendritic arborization in the amygdala, although these
phenotypes are dramatically reduced with a forebrain-specific deletion in adulthood.100.101
This finding provides evidence that these enzymes have distinct genomic targets in specific
cellular or developmental contexts. In the next section, we will explore current questions and
approaches regarding regulation of gene expression in the brain.

Gene regulation in the brain: unique strategies and new methodologies

From a general perspective, epigenetic regulation refers to mechanisms that mediate
persistent changes in gene expression in response to transient events, such as developmental
programs, experience, or environmental cues, although the stringency of this definition is
much debated.102-105 Thys, the activity of a specific gene or sets of genes across the genome
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is regulated by changes in chromatin structure that occur via interactions with the gene’s
local environment (¢/s) or other regions in the genome (#rans) and changes in nuclear
structure. Such chromatin remodeling involves dynamic processes that include the
movement of histones along DNA, covalent modifications to histone proteins (including
acetylation, methylation, and phosphorylation), the binding of transcription factors to
regulatory regions and the subsequent recruitment of coactivators and corepressors that may
be responsible for such modifications, or the covalent modification of DNA itself. These
processes work to integrate developmental and environmental signals over time to determine
levels and patterns of gene expression.

Several recent reviews discuss general principles of epigenetics and gene regulation in
neurons.104.106-111 \While the details of the mechanisms regulating neural gene expression
are beyond the scope of this review, we wish to emphasize the unique developmental
trajectory of chromatin state in neurons and to highlight recent insights obtained from high-
throughput sequencing approaches. Chromatin structure is known to reorganize during the
peak of synaptogenesis in postnatal life. This was first observed through analysis of
chromatin repeat length, which reflects the length of the linker DNA between nucleosomes
and is a proxy for the density of chromatin packing.}12 Chromatin repeat length in cortical
neurons is shorter than that of neighboring glia or other cell types,113 which suggests a
unique pattern of higher-order chromatin organization in neurons. Furthermore, shortening
of repeat length coincides with region-specific dynamics of neuronal maturation, suggesting
that regions undergo chromatin reorganization in response to neural activity and circuit
formation.114-116 Epigenomic analyses are now elaborating on these pioneering findings,

particularly through studies on higher-order chromatin organization and DNA methylation.
117-122

The extraordinary heterogeneity of the mammalian nervous system raises challenges in
dissecting the role of a given factor or genetic variant in precise spatial and developmental
contexts. The advent of single-cell sequencing has made it possible to identify and classify
neurons from their transcriptomes in addition to morphological or electrophysiological
characteristics.123-127 The cis-regulatory elements that coordinate the specification and
function of discrete neuronal types are being revealed through technological refinements in
chromatin immunoprecipitation sequencing (ChIP-seq) and ATAC-seq (assay for
transposase-accessible chromatin using sequencing) methods.125128-131 Fytyre studies will
describe the dynamics of these elements across development or in disease. In postnatal
development, experience-dependent neural activity induces transcriptional programs that
sculpt neural circuits by regulating synapse development and plasticity.132133 The complex
dialogue between the synapse and the nucleus involves diverse adhesion molecules,
scaffolding proteins, and chromatin regulators, many of which have been implicated in
neurodevelopmental disorders, such as ASD.134-136 Thus, perturbation of the mechanisms
that regulate gene expression at a genomic level may affect the development of the nervous
system during the earliest stages, causing global disruption in neuronal differentiation and
wiring or, at later time-points, causing abnormalities in synaptic function or activity-
dependent processes that underlie learning or more complex aspects of information
processing in the developed brain.
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Epigenetic mechanisms can define developmental trajectories

Gonadal hormones, such as estrogen and testosterone, bind steroid hormone receptors (SRs):
nuclear receptor transcription factors that can recruit chromatin remodeling machinery to
activate or repress gene expression. Accordingly, it has been proposed that developmental
exposure to hormones organizes sexual differentiation of the brain in part through long-term
effects on gene expression.137-141 Differential exposure to hormones in males and females
during a neurodevelopmental critical period is likely to result in sex-specific patterns of gene
expression by SRs that can lead to persistent sexually dimorphic chromatin patterning (Fig.
2). Consequently, when the gonads begin to secrete hormones at puberty, the same SR-
expressing neurons would possess a differential capacity to respond to the same hormone
stimulus, as a consequence of the previously established chromatin landscape. However, it
has proven difficult to test this hypothesis, as sex differences in gene expression are subtle—
even key drivers of sex differences, such as estrogen receptor a (ERa) and AR vary by only
a few folds in expression levels and are rarely detected in genome-wide screens for sex
differences. Identifying sites of hormone action and the mechanisms by which hormones
regulate gene expression in the brain is essential for understanding which neural processes
are likely to differ between the sexes. Given the dynamics of sex hormone levels throughout
development, it becomes apparent that disruptions in specific neurodevelopmental programs
may intersect with sex-specific gene regulation at various points in development or
adulthood to cause differences in the symptoms experienced by males and females.

Regulation of gene expression by steroid hormone receptors

Studies on sex differences in SR function in the brain have focused primarily on the
fundamental differences in circulating ligands: female ovaries primarily produce estrogen
and progesterone, while male testes release testosterone that can be converted into local
estradiol in the brain. However, there are many additional factors that can fine-tune
specificity in hormone-regulated gene expression, such as neural production of diverse
steroid hormones (neurosteroids), transcription co-factor expression, and local chromatin
context. Extensive details of SR mechanisms have been elucidated over the past 20 years;
however, the role of these receptors in regulating gene expression in distinct, behaviorally
relevant populations of neurons remains poorly characterized. This is largely due to the
technical challenges of isolating and purifying sufficient numbers of the sparse populations
that express hormone receptors. Here, we discuss mechanisms of gene regulation by SRs,
emphasizing insights obtained from biochemical and genomic approaches in non-neural
systems, to better understand how SR signaling can give rise to sex differences in gene
expression in the brain. We then discuss regions of the mammalian brain in which steroid
hormones are known to mediate sex-specific differentiations.

In the classic description of gene activation by SRs, circulating steroid hormones diffuse
through the cell membrane and bind to receptors, which then undergo a ligand-dependent
conformational change, dimerization, and association with cognate recognition sequences on
DNA.142.143 Estrogen receptor B (ERP) is highly homologous to ERa., with 95% homology
in the DNA-binding domain and 55% homology in the ligand-binding domain and similar
ligand-binding affinity for physiological estrogens.144 ERa and ER bind the same
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recognition sequence and can heterodimerize.145 As these receptors are co-expressed in
many brain regions, they therefore have the potential to both cooperate and compete with
one another. In addition to sex differences in levels of hormones and their receptors, sexually
dimorphic transcription programs can emerge from over 350 transcriptional cofactors that
provide contextual specificity and tuning of gene expression.146.147 Nuclear receptor
coactivators are large multi-unit complexes that link sequence-specific hormone receptors to
the general transcription machinery, as well as enzymatic factors that can covalently modify
histone tails or invoke ATP-dependent chromatin remodeling machinery.148 Corepressors
generally bind unliganded receptors and recruit histone deacetylase (HDAC)-containing
enzymatic complexes that maintain a repressive chromatin state.14” Of note, nuclear receptor
corepressor 1 (NCoR) interacts with MeCP2149 and is also an ASD risk gene.150 Co-
expression analysis of Allen Brain Atlas data recently identified the SR cofactors, including
NCoR, that are likely to play key roles in the mouse brain.151 It will be interesting to
determine whether these factors contribute to sex differences in gene expression or to
disease susceptibility. Characterization of neuron-specific or cell-type specific SR co-
regulators could lead to the development of neural selective estrogen receptor modulators
(SERMs) that potentiate or attenuate ERa./p transcriptional output in a defined population of
neurons to provide neuroprotective or mood benefits.

Steroid hormones are also known to produce rapid changes in neuronal function or behavior
that occur on the order of minutes, rather than hours or days.152-154 Notably, many of these
non-genomic effects may in fact converge at the level of gene regulation. Studies in diverse
tissues and cell types have demonstrated that estrogen and testosterone can act through
intracellular signaling cascades to mobilize calcium stores, causing CREB phosphorylation.
155 phospho-CREB can then activate a number of immediate early genes, including FOS,
and this cascade is required for estrogen-dependent dendritic spine formation.1%6.157 An
additional level of cross talk can occur at the level of signaling through Fos itself. Fos
protein heterodimerizes with Jun to form the AP-1 transcription factor, which directly binds
ERa and recruits it to DNA via a tethering mechanism.158159 Thys, steroid hormones can
regulate gene expression both through their own consensus DNA-binding sites and through
the actions of phospho-CREB and immediate early genes. Such cross talk may explain why
social experience can enhance or replace the effects of gonadal hormones on innate
behaviors in rodents, as seen in maternal behaviors demonstrated by reproductively naive
females exposed to pups.160-162

SR expression patterns in the brains of rodents and humans

All four gonadal hormone receptors (AR/PR/ERa/ER) are expressed most abundantly in
limbic and hypothalamic areas that regulate innate reproductive behaviors, including the bed
nucleus of the stria terminalis (BNST), the medial preoptic hypothalamus (MPOA), the
medial amygdala (MeA), and the ventrolateral nucleus of the ventromedial hypothalamus.
151,163-168 Al but ERP are expressed in the arcuate nucleus, which regulates homeostasis
including feeding and energy balance.169 Extensive analysis of ERa, ERp, and PR
expression describes signal throughout the cortex and in midbrain areas, such as the ventral
tegmental area (VTA), substantia nigra (SNc), periaqueductal gray (PAG), and raphe.
163,164,170-173 Thys, sex differences in reward processing and reward-seeking behavior may
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be controlled by the effects of SR function in VTA- and SNc-associated dopaminergic
pathways, while expression in the PAG may underlie sex differences in pain processing and
analgesia. Similarly, serotonergic projections from raphe nuclei have ramifications
throughout the brain, and widespread effects of such neuromodulation may underlie sex
differences in fear and anxiety behaviors, as well as stress-sensitivity and the activation of
the hypothalamic—pituitary—adrenal axis.1’ AR is also expressed in the cortex, particularly
in the primary visual cortex and prefrontal cortex.17®> These four receptors are present in the
suprachiasmatic nucleus of the hypothalamus, which regulates circadian rhythm, allowing
gonadal hormones to directly influence daily fluctuations in the adrenal output, sleep and
mood.17® Finally, ERa, ERB, and AR are found in astrocytes and endothelial cells, 176177
while ERB has anti-inflammatory effects in microglia.1’8 There are still few studies
quantifying the co-expression of these receptors or detailing the ontogeny of their
expression. RNA-seq experiments and fluorescent double /7 situ hybridization will provide
further insight into the shared sites of action of SRs, pinpoint novel hormone-responsive
populations, and classify the cell types that express gonadal hormone receptors.

In humans and monkeys, ERa and ERp are expressed in similar areas as in mice, including
high levels in the hypothalamus and amygdala and lower expression in the hippocampus and
cortex, particularly the temporal cortex.1’® ERp is more prominent in the cortex compared to
the hypothalamus, with significantly higher levels of expression in the deep layers of the
temporal and entorhinal cortex, suggesting that ER is the principal modulator of estrogen
effects on cognition in humans.18% AR is similarly expressed in the hypothalamus,
amygdala, and temporal cortex, as well as the diagonal band of Broca.181

Sex differences in SR expression and the onset of SR expression during brain development
have not been well described in humans, 182 and indeed these receptors are only minimally
detected in human brain transcriptome studies. Focused gene expression analyses in
subcortical areas rich in SRs may therefore identify downstream genes regulated by
hormone receptors that show a sex bias in expression. One such region, the accessory basal
nucleus of the amygdala, is larger in primates compared with rodents and sends projections
to the hippocampus and entorhinal cortex.17® At a more general level, sex-specific processes
in the neural circuits underlying dimorphic behavior can arise from the differentiation of
these pathways at different points83 (Fig. 3). Better understanding of where hormone
receptors are expressed in humans, when expression is initiated during development, and the
connectivity of these regions is necessary to understand how gonadal hormones can specify
unique developmental trajectories in males and females.

As discussed above, surges in testosterone during early development mediate male-specific
aspects of early brain development and differentiation. Lasting changes in gene expression
programmed by such developmental hormone surges or perturbations during hormone-
mediated sexual differentiation of the brain may therefore contribute to the male bias
observed in some neuropsychiatric disorders. Despite limited knowledge of the extent of SR
expression in the human brain, sex differences in specific syndromes may be linked to
hypothalamic dysfunction stemming from abnormal activity or development in individual
nuclei. For example, sex differences in impulsivity in the form of aggression and
hypersexual behavior seen in neurodevelopmental conditions such as ASD are thought to
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arise, in part, as a consequence of SR-regulated sex dimorphisms in hypothalamic nuclei that
control reproductive drive and contribute to affective state.184 Similarly, it has been well
documented that males and females differ in patterns of activation in the amygdala in
response to acute stress, and sex differences in the sensitivity of the amygdala to chronic
stress, as well as in the connectivity and function of corticoamygadlar pathways, is thought
to underlie aspects of the dramatic sex differences in the incidence and presentation of
depression and anxiety.185-187 |n addition, sex differences in the function and connectivity
of serotonergic projections from the raphe nuclei throughout the brain also likely contribute
to the dimorphisms seen in mood and anxiety disorders, as well as the response to
medications that act on these pathways.188-190 Finally, the dense interconnectivity of reward
pathways with frontal cortical circuitry is involved in attention, planning, and other aspects
of cognition and may contribute to sex differences in the incidence and presentation of
ADHD, as well as schizophrenia.191-193 |n a similar manner, it is likely that sex differences
in midbrain dopaminergic signaling underlies some of the sex differences in patterns of drug
abuse and addiction, as well as the difference between the sexes in their response to
antipsychotic medications,194-196

Integrating patient sequencing studies and patient symptoms to link genes

to pathology

As the list of syndromic neuropsychiatric disorders—those caused by mutations in specific
genes—continues to grow, deep phenotypic analyses of the discrete patterns of deficits
caused by disruption of individual genes will help to elucidate the developmental and
molecular programs that underlie specific and shared neural processes. Most
neuropsychiatric conditions are thought to occur as a consequence of the interactions of
environmental risk factors with genetically specified developmental sensitivity. The advent
of high-throughput sequencing led to an explosion of patient-sequencing studies that
provided fundamental insight into the developmental origins of psychiatric disorders. We
will now examine the findings in ASD and schizophrenia to discuss the possible
mechanisms by which epigenetic regulation of neural development may interact with
pathways for sexual differentiation in the nervous system.

Using a wide range of techniques to examine patterns of mutations associated with
neuropsychiatric conditions, culminating recently with whole-exome sequencing of patients
and their parents and siblings to identify de novo and rare coding mutations, many studies
have led to the identification of genes whose mutation correlates with the occurrence of
ASD and schizophrenia, as well as depression and bipolar disorder (reviewed in Refs.
197201y "'Whole-genome sequencing is now extending this work to identify noncoding
mutations associated with disease.292:203 These studies are likely to identify regulatory
elements that direct specific aspects of brain development and function and may provide
insight into the majority of disease cases, which have no currently known genetic origin.
With regards to ASD in particular, in addition to implicating neural specific processes,
including synaptic structure and neuronal excitability, these studies revealed a critical role
for genes implicated in chromatin and transcriptional regulation in the pathogenesis of these
disorders®6:197.200.204 (Fjg. 4). Integrating patient genome-sequencing studies with human
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gene expression and epigenomic data has identified key regulatory nodes and pathways

highlighting the importance of chromatin regulation in brain development and function.
66,197,200,204-213

ASD and schizophrenia: shared genes but distinct trajectories?

Recent evidence suggests an overlap in the genetic risks for ASD and schizophrenia with
regard to rare copy number variants and de novo mutation events, particularly for genes
involved in synaptic function and immune regulation, though the contribution of shared
common genetic risk between these disorders is less clear.214-216 |_jke ASD, the incidence
and presentation of schizophrenia shows a significant difference between males and females.
217 Males typically present earlier in adolescence with more severe symptoms and poorer
outcomes, suggesting that fundamental sex differences in the developing brain contribute to
the onset and pattern of deficits. However, despite some overlap in the mechanisms
contributing to ASD and schizophrenia and aspects of the behavioral and cognitive deficits
with which they present, the dramatic difference in their trajectories illustrates the central
role of distinct developmental periods.

As discussed above, ASD is typically diagnosed early in childhood, suggesting disruptions
of early developmental programs in the brain that result in deficits at the earliest stages of
life. Consistent with this hypothesis and the identification of multiple genes involved in
chromatin regulation and structure as risk alleles, recent work has identified genome-wide
alterations in the regulation of noncoding RNAs, patterns of histone modification, and
higher-order chromatin structure in tissue from patients with ASD.211.213.218.219 | contrast,
the majority of symptoms in schizophrenia evolve during adolescence, suggesting that
distinct developmental programs or mechanisms that are activated by the onset of puberty
may play roles in the pathogenesis.?20 The initiation of developmental programs following
the onset of puberty occurs via SR-dependent and SR-independent pathways, both of which
contribute to the restructuring and development of the nervous system for adult and sexually
dimorphic behaviors. A hallmark of these processes that occurs following the initiation of
these pathways at the onset of puberty is, for example, the elimination of synapses in
regions, including the prefrontal cortex, that continues throughout adolescence and into early
adulthood.221.222 Consistent with these observations at the cellular level, functional studies
demonstrate that cortical gray matter volume peaks before adolescence and then slowly
declines until reaching its adult volume.223 Such synaptic pruning is thought to achieve the
balance of excitatory and inhibitory activity in adult cortical regions, with adult patterns of
inhibitory activity in prefrontal cortical regions implicated as an essential part of network
dynamics and synchronized activity thought to underlie cognition and cortical processing.
224,225 An intriguing additional mechanism for sex differences in the incidence and
presentation of psychiatric illnesses during adolescence is the role of microglia in the
maturation and pruning that occurs during this adolescent period and the sex differences in
gene expression that suggest additional dimorphisms downstream of their activity.226:227
Thus, the developmental programs initiated by the onset of puberty that persist throughout
adolescence and into early adulthood represent fundamental programs of reorganization that
may unmask or create new substrates for the neuropathology that underlies adult
presentations of psychiatric illnesses.228
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Intriguingly, recent work suggests shared common genetic overlap in social communication
difficulties and both ASD and schizophrenia but distinct patterns in the relationship between
genetic traits and each disorder, largely consistent with the onset of clinical symptoms.216
Thus, while the sex differences in ASD may be a consequence of the early sex
differentiation of the brain during embryonic and perinatal development, those observed in
schizophrenia are likely a consequence of the regulatory epigenetic landscape established
during this period but only activated by the onset of puberty. In this context, sex differences
observed in the onset and presentation of schizophrenia could arise either from the direct
activation of genes in a sexually dimorphic manner by gonadal hormones or through signals
in adolescence common to both sexes acting on poised sexually dimorphic programs
established early in development (Fig. 2).

Consistent with both models, sequencing studies of sex-biased gene expression in regions of
the human brain at distinct developmental time points reveals limited overlap between sex-
biased genes early in development and in adolescence and an enrichment for genes
implicated in neuropsychiatric illness in those with a male expression bias.22% Future studies
will undoubtedly reveal whether additional sets of mutations associated with schizophrenia
are enriched in regulatory regions that mediate aspects of gene regulation specifically during
adolescence, thus contributing to the developmental window during which symptoms and
sex differences manifest,202:230-235

Sex differences and stress: intersection at the level of DNA

As a final example of how such regional regulation of sexually dimorphic differentiation of
the nervous system may contribute to sex differences in neuropsychiatric illness, we
consider role of early life stress in the later onset of depression. Women have twice the
lifetime risk of developing depression compared with men and appear to experience
symptoms that are more severe and diverse.236:237 |_jke many other major neuropsychiatric
conditions, major depressive disorder typically evolves during early adolescence, with an
earlier and distinct presentation in girls compared with boys.238.239 This suggests that sex-
specific pathways that regulate mood are activated by the onset of puberty and may intersect
with stress response pathways to contribute to gender-specific symptoms.240.241

Increasing evidence supports a role for epigenetic changes in the pathogenesis of depression,
particularly in response to early-life stress. The interactions with stress signaling and the
pathways for sex differentiation suggest a mechanism by which the activation of stress
pathways may act sex-specifically to control the response to chronic stress.184.239.242 Thege
findings are supported at the gene regulatory level by recent studies on cross talk between
SRs and glucocorticoid receptor (GR). In response to stress, the adrenal glands release
glucocorticoid hormones: cortisol in humans and corticosterone (CORT) in rodents. In the
brain, CORT binds to both glucocorticoid (GR) and mineralocorticoid (MR) receptors. MR
and GR have a highly homologous DNA-binding domain but possess different affinities for
CORT: MR has a very high affinity of 0.5 nM, while GR affinity is about 10-fold lower.243
Thus, MR is thought to respond to the onset of stress, while GR responds to increasing
levels of CORT to end the stress reaction and promote memory consolidation, 24 although a
recent /n vivo study found that these receptors heterodimerize in response to acute stress.24°
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Both receptors are expressed in the hippocampus and lateral septum, while GR is found in
many other areas, including the central amygdala, paraventricular hypothalamus, and
prefrontal cortex,246:247

The DNA-binding domains of GR and MR are homologous to those of AR and PR;
therefore, all four of these receptors can bind the same recognition sequences.143 ChIP-seq
data from castration-resistant prostate cancer (CRPC) has shown that half of AR occupancy
sites are bound by GR in dexamethasone-treated cells and that GR can substitute for AR to
regulate a subset of AR transcriptional programs.248 These observations reveal a mechanism
by which stress can alter sexual differentiation of the brain. For example, FK506-binding
protein 5 (FKBP5) is a GR target gene and co-factor that that has been implicated in
depression, posttraumatic stress disorder (PTSD), and anxiety.249 AR directly increases
FKBP expression in the prostate through multiple distal and intronic enhancers,250:251 pyt
regulation of FKBP5 by testosterone signaling in the brain has not yet been explored. GR
recruitment can also modify chromatin to facilitate binding by other transcription factors in a
process known as assisted loading.252 ChlP-seq studies have demonstrated that GR increases
chromatin accessibility to modulate ERa binding to DNA through AP-1 sites.253:254 This
could potentially lead to new estrogen-responsive gene programs after a period of stress.
Taken together, these studies suggest that stress can directly alter regulation of gene
expression by gonadal hormones in the brain (Fig. 5).

Intriguingly, hypermethylation of the GR locus has been observed in hippocampal tissues
from males with a history of abuse who completed suicide.255:256 Both sexes show changes
in DNA methylation in immune-related genes in the context of PTSD, while some sex
differences are observed in non-neuronal cell types in the setting of depression,257:258
highlighting a role for epigenetic changes in mediating long-term pathology via cell type—
specific mechanisms. Indeed, multiple studies have already identified heterogeneity in
patterns of methylation across neuronal populations.259:260 Thus, pathways induced by
chronic stress are likely to interact both with mechanisms that mediate long term, sex-
specific patterns of gene regulation across the genome, as well as direct activation of targets
of sex hormone regulation to mediate the pathogenesis of depression and PTSD.

Conclusions

In summary, epigenetic mechanisms likely mediate sex-specific differentiation in the
nervous system at every stage of development. As these pathways elaborate, the impact of
genetic and environmental factors that contribute to psychiatric illness can thus have distinct
effects in either sex, contributing to sex differences in the time of presentation, pattern of
symptoms, or severity of illness. As we continue to understand the specific developmental
programs and neural process that mediate sex-specific differentiation and function in the
brain at particular developmental time-points, we will gain deeper insights into how specific
mutations sensitize individuals to distinct neuropsychiatric conditions. Although we are not
yet capable of developing treatments that target specific epigenetic mechanisms or sex-
specific developmental processes to ameliorate the symptoms of any psychiatric illness,
understanding how these mechanisms contribute to these conditions in both sexes is critical
to the future of treatment in mental health.
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Figurel.
Intersection of hormone surges with stages of brain development and maturation. Major

events in neural development are depicted during human gestation (weeks) and into
adulthood (years). Fluctuations in hormone levels intersect with these events in a sex-
specific fashion; critical periods for sexual differentiation of the brain are boxed in orange.
Male testosterone levels (blue ling) begin to rise during the eighth week of gestation as the
testes mature, peak around week 16, and decline after week 24. Testosterone levels spike
again in infancy with a peak around 1-3 months and then remain flat until the onset of
puberty. In contrast, in females, the ovaries are largely inactive during gestation and begin to
secrete estradiol (red line) and progesterone during puberty. There is also evidence of
estradiol secretion in female infants, but the exact levels and duration are not well described.
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Figure2.
Gene regulatory strategies for achieving sex-biased gene expression. Sex differences in gene

expression can be patterned by differential exposure to gonadal hormones during early life
or puberty. Such differences can arise either from epigenetic events where lasting changes in
chromatin state are established by transient exposure to hormone or through the induction of
a trans-acting factor. (A) During developmental hormone exposure (mid-gestation or
perinatal), ligand-bound steroid hormone receptors induce an active chromatin state (green
peak) on an enhancer (grey oval), thereby causing a gene to be expressed more highly in
males. (B) Alternatively, a chromatin modifier, co-regulator, or transcription factor may be
present in one sex or the other; here, this scenario is depicted in females. The effects of early
hormone signaling may not become apparent until puberty. (C) Male hormones prime a gene
for later expression during adolescence (yellow peak indicates poised enhancer). (D)
Cycling hormones in adolescent and adult females regulate gene expression acutely in the
presence of estradiol or progesterone. A ligand-bound ERa homodimer is depicted in red.
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Figure 3.
Sex-specific function in neural circuits and effects of mutations. Sex-specific differentiation

in the nervous system may occur at different points in neural circuits to produce gender-
typical behaviors. (A) A mutation may therefore alter expression of a gene that is expressed
in a sex-specific manner in a brain region, thereby changing its output to cause phenotypes
in only one sex. (B) Alternatively, a mutation may produce different effects in the two sexes
non-cell autonomously by affecting the function of a region functionally upstream of sex-
specific circuitry to cause distinct phenotypes in each sex. (C) Finally, functional disruption
of a downstream behavioral output region that receives sexually dimorphic input can also
produce a different effect in the two sexes; here, the mutation changes the response of
neurons that receive more input in females compared with males.
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Figure 4.
Mechanisms of gene regulation and effects of disease-associated mutations. Genes

implicated in cell-specific neuronal function may (A) encode proteins that are expressed in
distinct cell types or (B) regulate chromatin structure to control patterns of the expression of
many genes in specify distinct cell types . (C) Profound phenotypes may arise from a loss-
of-function mutation (LoF) in a coding sequence of a broadly expressed gene. (D) Mutations
in a chromatin regulatory factor affect gene expression in trans by changing chromatin state
at multiple target genes, thereby resulting in dysregulation of gene expression but not
complete LoF. (E) Alternatively, a mutation in a regulatory element could alter spatial or
temporal aspects of gene expression, effectively causing a LoF in a specific context, such as
a distinct cell type. Active chromatin states are depicted in green in wild-type individuals
and attenuated to a yellow-green when the chromatin regulator is not functional. (F) Finally,
a mutation in an enhancer of a chromatin regulator can lead to aberrant chromatin patterning
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in only a subset of neurons or developmental stages, resulting in a comparatively mild
phenotype.
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Figureb.
Cross talk between gonadal hormone signaling and stress response. (A) In the classical

model of nuclear receptor action, there is no binding of AR to its consensus androgen
response elements (ARE) in the absence of ligand. (B) When testosterone is present, AR
homodimerizes and binds AREs, but can also bind glucocorticoid response elements (GRES)
that are typically responsive to CORT. (C) Conversely, in the presence of CORT, GR can
both activate its own GRE targets and bind ARES to activate testosterone-responsive genes.
GR can also open (inaccessible chromatin (D) through transient binding to non-consensus
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sites, and € recruitment of chromatin-remodeling machinery. (F) This action reveals
additional binding sites that can later be bound by ERa tethered to AP-1.
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