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Abstract

The sexual differentiation of the mammalian nervous requires the precise coordination of the 

temporal and spatial regulation of gene expression in diverse cell types. Sex hormones act at 

multiple developmental time points to specify sex-typical differentiation during embryonic and 

early development and to coordinate subsequent responses to gonadal hormones later in life by 

establishing sex-typical patterns of epigenetic modifications across the genome. Thus, mutations 

associated with neuropsychiatric conditions may result in sexually dimorphic symptoms by acting 

on different neural substrates or chromatin landscapes in males and females. Finally, as stress 

hormone signaling may directly alter the molecular machinery that interacts with sex hormone 

receptors to regulate gene expression, the contribution of chronic stress to the pathogenesis or 

presentation of mental illness may be additionally different between the sexes. Here, we review the 

mechanisms that contribute to sexual differentiation in the mammalian nervous system and 

consider some of the implications of these processes for sex differences in neuropsychiatric 

conditions.
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Many psychiatric conditions display a sex bias in incidence, onset, or symptoms; however, 

the underlying mechanisms that lead to these sex differences are still obscure. Here, we 

consider some of the levels of development and mechanisms of gene regulation in which 

sex-specific processes may contribute to sexual dimorphisms observed in mental illness, 

with a focus on gene regulation and epigenetic mechanisms. We first describe early 

behavioral sex differences in humans, focusing on two early-presenting disorders that are 

diagnosed more frequently in males: autism spectrum disorder (ASD) and attention-deficit/

hyperactivity disorder (ADHD). We next consider the developmental events that give rise to 

sex differences in the brain and discuss gene regulatory mechanisms that may underlie the 
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persistent effects of these processes on brain function. We then explore how similar genetic 

risks for ASD and schizophrenia could be invoked in either early life or adolescence, 

resulting in the distinct trajectories seen in these two conditions. We propose that the 

intersection between the gene programs that regulate sex-specific development and function 

in the brain and those that are disrupted in the context of psychiatric illness can significantly 

influence the pathogenesis and presentation of most neuropsychiatric conditions.

Sex differences in human behavior and neurodevelopmental disorders

Before considering the molecular mechanisms through which pathways for sexual 

differentiation may intersect with genetic and environmental factors that contribute to 

psychiatric illness, we first consider a few examples in which early sexual differentiation of 

the nervous system manifests in early differences in behavior between boys and girls. Not 

surprisingly, these differences appear in the context of both normal development and in the 

early presentation of neuropsychiatric conditions.

Little debate exists as to the effects of cultural influences on the early aspects of sex-typical 

behavior in children. Indeed, the dichotomy of nature versus nurture and their distinct 

contributions to sex-typical development and behavior is generally acknowledged as false, 

and human sex-typical behaviors are considered to be the result of dynamic interactions 

between pre- and postnatural biological factors as well as a child’s social milieu (reviewed 

in Refs. 1–3). At the earliest stages of life, consistent differences in behavior and neurologic 

development appear between boys and girls. Infant girls appear to have more intense and 

expressive reactions to painful stimuli.1,2 Male infants appear to track objects more 

consistently in an event-mapping task.2,3 Intriguingly, while both infant boys and girls attend 

more to female faces, no significant difference in eye-tracking of social stimuli appears 

between in the sexes in healthy infants.3–5 Such differences reflect only a few of the likely 

innate differences in neural function between infant boys and girls. Nevertheless, they 

illustrate the perhaps intuitive conclusion that, like other mammals, embryonic and early 

developmental programs regulated by sex hormones result in innate differences between the 

sexes that are present at the earliest stages of life.

While the consequences of such differences for normal development remain unknown, 

though actively explored, they likely contribute to differences in presentation seen in 

pediatric neuropsychiatric conditions. Two examples serve to illustrate how, in addition to 

likely sex differences in the molecular pathogenesis of such disorders (discussed below), 

innate sex differences in behavior likely also contribute to the differences in symptoms 

observed between boys and girls. ASD is diagnosed nearly four times more often in boys 

than in girls.6–9 In addition to this overall sex difference, the presentation of ASD also 

differs between boys and girls. While many studies have documented a higher incidence of 

intellectual impairment in girls with ASD compared with boys, some debate exists as to 

whether the overall severity of ASD differs between them.10 Differences between the 

presentation of boys and girls with ASD reflect biological differences in symptoms, which 

may also contribute to biases in reporting and attention. Externalizing behaviors, such as 

aggression, repetitive behaviors, restricted interests, reduced prosocial behavior, and 

hyperactivity tend to occur more prominently in males, while females with ASD have more 

Manoli and Tollkuhn Page 2

Ann N Y Acad Sci. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



internalizing symptoms, including anxiety, depression, and self-oriented emotional 

disruption, that are often only reported by parents.10–12 As a consequence of these potential 

differences in presentation, ASD in boys is more likely to come to attention due to disruptive 

behaviors in school or at home, thereby skewing the bias in prevalence even further. Sex 

differences in innate responses to stimuli or patterns of emotional expressivity likely 

contribute to distinct presentation of these disorders. Indeed, sex differences in patterns of 

cognition, in particular specific dimensions of social cognition and abstract reasoning 

associated with identifying rules and patterns within systems, led to the hypothesis that 

domains of autistic symptoms may arise from an extreme masculinization of the brain in 

autistic patients.13 Nevertheless, despite many efforts to determine if prenatal exposure to 

increased levels of androgens is associated with ASD, no causal mechanisms have been 

established linking sex hormone signaling to ASD.14,15 However, it is worth noting that such 

a relationship has been repeatedly supported, linking elevated levels of umbilical cord 

testosterone to language delays in children, suggesting that, in specific contexts likely 

determined by diverse genes affecting sensitive aspects of CNS development, sex differences 

in developmental pathways may contribute to patterns of symptoms that children present.16 

Additional mechanisms may mediate sex differences in the sensitivity to genomic disruption 

or the consequences of ASD mutations for neural development.

Given the innate differences between the sexes in the presentation or pathogenesis of most if 

not all psychiatric conditions, it is worth considering whether a re-evaluation of the criteria 

for those particularly diagnosed in childhood may be warranted. For example, in ASD, aside 

from specific core deficits in social cognition and emotion processing, other patterns of 

symptoms used to establish diagnostic criteria may vary between the sexes. Further 

investigation of sexual dimorphisms in phenotypes resulting from disease-associated 

mutations will be central to such refinements in clinical criteria.

Extreme sex biases in the diagnosis of ADHD have been observed, such that boys can 

outnumber girls by up to 10:1, though meta-analyses and population-based studies suggest 

that this ratio is likely closer to 4:1.17–19 Intriguingly, sex differences in the prevalence of 

ADHD appear highest during childhood and become significantly less pronounced later in 

life.20,21 As with ASD, given that the pattern of symptoms of ADHD manifested by boys 

more strongly correlates with conduct disorder and disruptive behaviors, parents or teachers 

are more likely to bring these cases to attention. Consistent with a model in which females 

are more likely to manifest comorbid distress or disorders with internalizing symptoms, girls 

are typically diagnosed later in childhood than their male counterparts.22 However, in 

addition to sex differences in overall prevalence rate, the distribution of subtypes or patterns 

of associated phenotypes also appears to differ between the sexes, with a larger percentage 

of females (45–60%) presenting as inattentive compared with males (35–50%).17,23 Thus, 

innate sex differences in the circuits regulating attention or behavioral inhibition may 

underlie the presentation of ADHD, as well as other neuropsychiatric conditions. Indeed, it 

has been observed that boys with ADHD exhibit deficits in behavioral inhibition, while girls 

tend to display impairments in planning.24 Given that the extent and pattern of sex 

differences in ADHD-associated symptoms appear to decrease with age into adulthood, it is 

interesting to speculate that, despite innate differences in neural circuits underlying attention 

and behavioral inhibition, the developmental pathways activated during adolescence 
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(discussed below) normalize these differences and restructure such circuits to participate in 

behavioral processes common to both sexes in adults, while distinct pathways elaborate the 

sexual dimorphisms in behavior and pathology seen in later in development.

Independent of the societal factors that likely skew the diagnoses of these two syndromes, 

the male bias of ASD and ADHD prevalence and the distinct patterns in which boys versus 

girls present with these disorders suggest that innate sex differences in the brain are likely 

programmed during the earliest stages of development and contribute to sex differences in 

the symptoms observed. We now turn to the molecular mechanisms that mediate the sexual 

differentiation of the mammalian nervous system and discuss how these pathways may be 

altered to give rise to sex differences in the pathogenesis of neuropsychiatric conditions.

Sexual differentiation of the brain is regulated by gonadal hormones

Much of our knowledge about the cellular and molecular differences between the sexes in 

the mammalian brain has been obtained through studies of the hormonal regulation of the 

differentiation and function of neural circuits underlying innate, sex-typical behaviors and 

physiology in rodents, particularly sexual behavior and territorial aggression. The neural 

circuitry that controls these behaviors develops under the control of gonadal hormones.25–29 

Male mice undergo a surge of testosterone at birth that subsides within hours.30,31 This 

circulating testosterone is directly converted to estradiol in the brain by aromatase.32,33 

Estradiol is the primary endogenous estrogen, although estrone and estriol also bind estrogen 

receptors; here, we primarily use the general term estrogen for simplicity. Pharmacological 

and genetic experiments have demonstrated that this brain-derived perinatal estrogen is the 

primary driver of sexual differentiation of the brain and permanently establishes sex-typical 

differences in the structure and function of the neural circuitry that mediates sex-specific 

behaviors in the adult.28,34–36 Females given estradiol at birth display male-typical fighting 

behavior as adults with no additional hormone supplementation.37 This sensitivity to 

estradiol is lost by the second postnatal week.38–40 Although sex differences in neural 

circuitry are specified during this postnatal critical period, sex-typical behaviors are not 

displayed until puberty, when the male testes produce testosterone and female ovaries make 

estrogens and progesterone. These hormones are acutely required in adult life: gonadectomy 

abolishes mating and aggression, but the circuit structure remains intact and behaviors can 

be restored by exogenous hormones. Although testosterone is the primary driver of adult 

male-typical behaviors, estradiol alone can restore some mating and territorial behaviors.
41–44 Therefore, estrogen acts to both modulate postnatal male-typical circuit development 

and to “activate” circuits for sex-typical behaviors in adulthood.

In addition to its masculinizing effects on behavior, perinatal estrogen is known to give rise 

to anatomic and molecular sex differences. Many excellent reviews have summarized 

findings on cellular and neuroanatomic sex differences, including cell number, neural 

projections, and spine number.27,34,45–48 Sex differences in gene expression in the brain 

have also been described in both rodents and humans.49–56 Although estrogen is the primary 

driver of sexual differentiation in rodents, both estrogen and testosterone signaling are 

required for full masculinization of adult behaviors. Male mice mutant for androgen receptor 

(AR), the receptor for testosterone, show decreased spatial memory, increased anxiety, 
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decreased play fighting, and reduced sexual and territorial behaviors.57,58 Loss of estrogen 

signaling, either through gonadectomy or mutation of estrogen receptors, increases anxiety 

in mice.59,60

In humans, however, it appears that brain masculinization occurs largely through 

testosterone signaling, rather than estrogen. Human males with mutations in CYP19A1, the 

gene for aromatase, cannot synthesize estrogen, yet present as normal males. Men with 

aromatase deficiency experience sustained linear growth rather than a pubertal growth spurt 

and epiphyseal closure, demonstrating that estrogen is required in males for proper skeletal 

maturation.61 In contrast, AR function is essential for phenotypic and behavioral 

masculinization of human males. Patients with an XY karyotype and a complete loss of AR 

function have complete androgen insensitivity syndrome (CAIS), present as women, and 

have female-typical brain morphology.62 Humans also experience developmental 

testosterone surges; though consistent with the scaling of natal development, they are much 

more prolonged than those in rodents. The testes begin to secrete testosterone around week 7 

of gestation, with maximal levels between weeks 8 and 24.63,64 Human brain at mid-

gestation is similar to mouse brain at birth with regard to staging of cortical development.
65,66 The timing of developmental hormone surges is thus somewhat conserved between 

rodents and humans: the mid-gestation testosterone surge in humans is concordant with the 

perinatal surge in mice and rats. Human males also experience an additional surge in infancy 

that peaks between months 1 and 3.67,68 Female ovaries are also known to be active during 

infancy, but the levels of estradiol are variable, and the time course of its secretion has not 

been well described.68–70 The timing of these increases in gonadal hormone levels intersects 

with neural development so that male and female brains have very different internal states 

during neurogenesis, neuronal migration and synaptogenesis (Fig. 1). Consequently, it is not 

surprising that, like the myriad dimorphisms observed in rodents due to the postnatal 

testosterone surge, humans also demonstrate innate differences during fetal and infant 

development between the sexes.71,72

Sex chromosomes and brain development

Sex chromosomes also contribute to sexual differentiation of the brain, both directly through 

their own genetic content and indirectly through regulation of gonadal development 

(reviewed in Refs. 73–76). Sex chromosome aneuploidies are some of the most common 

genetic disorders in humans, affecting nearly 1/400 live births.77 These disorders are 

associated with cognitive and behavioral symptoms, particularly social skills and motor 

abilities.78 Notably, language and spatial abilities appear to correlate with sex chromosome 

dosage; females with X monosomy show normal or increased verbal and lexical abilities and 

visuospatial deficits, while individuals with sex chromosome polysomy have language 

impairments that increase with the number of chromosomes, while spatial skills are often 

enhanced.77–79 Brain imaging studies have identified a relationship between sex 

chromosome dosage and brain volume77 and highlight specific chromosomal effects in 

cortical80 and subcortical81,82 brain areas. Mouse models of sex chromosome aneuploidies 

have been used to discern the effects of sex chromosomes on specific behaviors, including 

social behaviors, anxiety, feeding, and nociception.74 The most widely used model is that of 

the “four core genotypes.” This system employs two modified alleles of the testis-
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determining Sry gene; one where Sry has been deleted from the Y chromosome, resulting in 

genetic males that resemble females, and another where Sry has been inserted on an 

autosome to generate XX animals that develop testes.83 Comparison of these mutants with 

wild-type XX and XY animals thereby permits the dissociation of sex chromosome 

complement and gonadal development.

Similar to Sry, the few other genes on the Y chromosome are primarily specialized for testis 

determination and spermatogenesis.84 Gene products such as DDX3Y, UTY, and KDM5D 

are abundant in the brain, but their neural functions have not been elucidated.51,85–87 In 

contrast, the X chromosome is enriched for genes that control brain function; 40% of the 

genes on the X are expressed in the brain, and X-linked gene expression is higher in the 

brain of both sexes compared with other tissues.88–91 As the X chromosome is also the most 

rapidly evolving mammalian chromosome, it has been suggested that this enrichment of 

neural-expressed genes is a consequence of natural selection for increased cognitive 

abilities.88,92–94 Consequently, X-linked mutations are a leading cause of intellectual 

disability, a condition that is more prevalent in boys than girls.89,93,94 As female cells 

achieve dosage compensation through stochastic inactivation of one X chromosome (XCI), 

females are buffered from the effects of deleterious X mutations.95,96 A recent analysis of 

XCI in diverse human cell types and tissues established that the extent of X inactivation 

varies within and between individuals and is often incomplete.97 In brain, excitatory and 

inhibitory neurons show different patterns of clonal XCI mosaicism within a cortical column 

owing to their different developmental migration patterns. Excitatory neuron XCI is 

heterogeneous with high variance within and between individuals, while inhibitory neurons 

show equal, fine-grained inactivation patterns, suggesting that any heterozygosity for an X-

linked gene would affect excitatory circuitry only in specific clonal areas, but all inhibitory 

circuits would be affected equally.98

What genes on the X or Y chromosomes are contributing to sex differences in brain 

development and function? Histone lysine demethylases are intriguing candidates, as they 

can induce broad, persistent effects on gene expression. Kdm6a/Utx and Kdm5c/SMCX are 

known escapers of X-inactivation, resulting in increased expression of these epigenetic 

regulators in the brains of females. Mutations in KDM5C have been implicated in a variety 

of neurodevelopmental disorders, including intellectual disability, ASD, and cerebral palsy.
99,100 Mice lacking Kdm5c display increased aggression, decreased anxiety, impaired motor 

coordination, and decreased dendritic arborization in the amygdala, although these 

phenotypes are dramatically reduced with a forebrain-specific deletion in adulthood.100,101 

This finding provides evidence that these enzymes have distinct genomic targets in specific 

cellular or developmental contexts. In the next section, we will explore current questions and 

approaches regarding regulation of gene expression in the brain.

Gene regulation in the brain: unique strategies and new methodologies

From a general perspective, epigenetic regulation refers to mechanisms that mediate 

persistent changes in gene expression in response to transient events, such as developmental 

programs, experience, or environmental cues, although the stringency of this definition is 

much debated.102–105 Thus, the activity of a specific gene or sets of genes across the genome 
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is regulated by changes in chromatin structure that occur via interactions with the gene’s 

local environment (cis) or other regions in the genome (trans) and changes in nuclear 

structure. Such chromatin remodeling involves dynamic processes that include the 

movement of histones along DNA, covalent modifications to histone proteins (including 

acetylation, methylation, and phosphorylation), the binding of transcription factors to 

regulatory regions and the subsequent recruitment of coactivators and corepressors that may 

be responsible for such modifications, or the covalent modification of DNA itself. These 

processes work to integrate developmental and environmental signals over time to determine 

levels and patterns of gene expression.

Several recent reviews discuss general principles of epigenetics and gene regulation in 

neurons.104,106–111 While the details of the mechanisms regulating neural gene expression 

are beyond the scope of this review, we wish to emphasize the unique developmental 

trajectory of chromatin state in neurons and to highlight recent insights obtained from high-

throughput sequencing approaches. Chromatin structure is known to reorganize during the 

peak of synaptogenesis in postnatal life. This was first observed through analysis of 

chromatin repeat length, which reflects the length of the linker DNA between nucleosomes 

and is a proxy for the density of chromatin packing.112 Chromatin repeat length in cortical 

neurons is shorter than that of neighboring glia or other cell types,113 which suggests a 

unique pattern of higher-order chromatin organization in neurons. Furthermore, shortening 

of repeat length coincides with region-specific dynamics of neuronal maturation, suggesting 

that regions undergo chromatin reorganization in response to neural activity and circuit 

formation.114–116 Epigenomic analyses are now elaborating on these pioneering findings, 

particularly through studies on higher-order chromatin organization and DNA methylation.
117–122

The extraordinary heterogeneity of the mammalian nervous system raises challenges in 

dissecting the role of a given factor or genetic variant in precise spatial and developmental 

contexts. The advent of single-cell sequencing has made it possible to identify and classify 

neurons from their transcriptomes in addition to morphological or electrophysiological 

characteristics.123–127 The cis-regulatory elements that coordinate the specification and 

function of discrete neuronal types are being revealed through technological refinements in 

chromatin immunoprecipitation sequencing (ChIP-seq) and ATAC-seq (assay for 

transposase-accessible chromatin using sequencing) methods.125,128–131 Future studies will 

describe the dynamics of these elements across development or in disease. In postnatal 

development, experience-dependent neural activity induces transcriptional programs that 

sculpt neural circuits by regulating synapse development and plasticity.132,133 The complex 

dialogue between the synapse and the nucleus involves diverse adhesion molecules, 

scaffolding proteins, and chromatin regulators, many of which have been implicated in 

neurodevelopmental disorders, such as ASD.134–136 Thus, perturbation of the mechanisms 

that regulate gene expression at a genomic level may affect the development of the nervous 

system during the earliest stages, causing global disruption in neuronal differentiation and 

wiring or, at later time-points, causing abnormalities in synaptic function or activity-

dependent processes that underlie learning or more complex aspects of information 

processing in the developed brain.
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Epigenetic mechanisms can define developmental trajectories

Gonadal hormones, such as estrogen and testosterone, bind steroid hormone receptors (SRs): 

nuclear receptor transcription factors that can recruit chromatin remodeling machinery to 

activate or repress gene expression. Accordingly, it has been proposed that developmental 

exposure to hormones organizes sexual differentiation of the brain in part through long-term 

effects on gene expression.137–141 Differential exposure to hormones in males and females 

during a neurodevelopmental critical period is likely to result in sex-specific patterns of gene 

expression by SRs that can lead to persistent sexually dimorphic chromatin patterning (Fig. 

2). Consequently, when the gonads begin to secrete hormones at puberty, the same SR-

expressing neurons would possess a differential capacity to respond to the same hormone 

stimulus, as a consequence of the previously established chromatin landscape. However, it 

has proven difficult to test this hypothesis, as sex differences in gene expression are subtle––

even key drivers of sex differences, such as estrogen receptor α (ERα) and AR vary by only 

a few folds in expression levels and are rarely detected in genome-wide screens for sex 

differences. Identifying sites of hormone action and the mechanisms by which hormones 

regulate gene expression in the brain is essential for understanding which neural processes 

are likely to differ between the sexes. Given the dynamics of sex hormone levels throughout 

development, it becomes apparent that disruptions in specific neurodevelopmental programs 

may intersect with sex-specific gene regulation at various points in development or 

adulthood to cause differences in the symptoms experienced by males and females.

Regulation of gene expression by steroid hormone receptors

Studies on sex differences in SR function in the brain have focused primarily on the 

fundamental differences in circulating ligands: female ovaries primarily produce estrogen 

and progesterone, while male testes release testosterone that can be converted into local 

estradiol in the brain. However, there are many additional factors that can fine-tune 

specificity in hormone-regulated gene expression, such as neural production of diverse 

steroid hormones (neurosteroids), transcription co-factor expression, and local chromatin 

context. Extensive details of SR mechanisms have been elucidated over the past 20 years; 

however, the role of these receptors in regulating gene expression in distinct, behaviorally 

relevant populations of neurons remains poorly characterized. This is largely due to the 

technical challenges of isolating and purifying sufficient numbers of the sparse populations 

that express hormone receptors. Here, we discuss mechanisms of gene regulation by SRs, 

emphasizing insights obtained from biochemical and genomic approaches in non-neural 

systems, to better understand how SR signaling can give rise to sex differences in gene 

expression in the brain. We then discuss regions of the mammalian brain in which steroid 

hormones are known to mediate sex-specific differentiations.

In the classic description of gene activation by SRs, circulating steroid hormones diffuse 

through the cell membrane and bind to receptors, which then undergo a ligand-dependent 

conformational change, dimerization, and association with cognate recognition sequences on 

DNA.142,143 Estrogen receptor β (ERβ) is highly homologous to ERα, with 95% homology 

in the DNA-binding domain and 55% homology in the ligand-binding domain and similar 

ligand-binding affinity for physiological estrogens.144 ERα and ERβ bind the same 
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recognition sequence and can heterodimerize.145 As these receptors are co-expressed in 

many brain regions, they therefore have the potential to both cooperate and compete with 

one another. In addition to sex differences in levels of hormones and their receptors, sexually 

dimorphic transcription programs can emerge from over 350 transcriptional cofactors that 

provide contextual specificity and tuning of gene expression.146,147 Nuclear receptor 

coactivators are large multi-unit complexes that link sequence-specific hormone receptors to 

the general transcription machinery, as well as enzymatic factors that can covalently modify 

histone tails or invoke ATP-dependent chromatin remodeling machinery.148 Corepressors 

generally bind unliganded receptors and recruit histone deacetylase (HDAC)-containing 

enzymatic complexes that maintain a repressive chromatin state.147 Of note, nuclear receptor 

corepressor 1 (NCoR) interacts with MeCP2149 and is also an ASD risk gene.150 Co-

expression analysis of Allen Brain Atlas data recently identified the SR cofactors, including 

NCoR, that are likely to play key roles in the mouse brain.151 It will be interesting to 

determine whether these factors contribute to sex differences in gene expression or to 

disease susceptibility. Characterization of neuron-specific or cell-type specific SR co-

regulators could lead to the development of neural selective estrogen receptor modulators 

(SERMs) that potentiate or attenuate ERα/β transcriptional output in a defined population of 

neurons to provide neuroprotective or mood benefits.

Steroid hormones are also known to produce rapid changes in neuronal function or behavior 

that occur on the order of minutes, rather than hours or days.152–154 Notably, many of these 

non-genomic effects may in fact converge at the level of gene regulation. Studies in diverse 

tissues and cell types have demonstrated that estrogen and testosterone can act through 

intracellular signaling cascades to mobilize calcium stores, causing CREB phosphorylation.
155 Phospho-CREB can then activate a number of immediate early genes, including FOS, 

and this cascade is required for estrogen-dependent dendritic spine formation.156,157 An 

additional level of cross talk can occur at the level of signaling through Fos itself. Fos 

protein heterodimerizes with Jun to form the AP-1 transcription factor, which directly binds 

ERα and recruits it to DNA via a tethering mechanism.158,159 Thus, steroid hormones can 

regulate gene expression both through their own consensus DNA-binding sites and through 

the actions of phospho-CREB and immediate early genes. Such cross talk may explain why 

social experience can enhance or replace the effects of gonadal hormones on innate 

behaviors in rodents, as seen in maternal behaviors demonstrated by reproductively naive 

females exposed to pups.160–162

SR expression patterns in the brains of rodents and humans

All four gonadal hormone receptors (AR/PR/ERα/ERβ) are expressed most abundantly in 

limbic and hypothalamic areas that regulate innate reproductive behaviors, including the bed 

nucleus of the stria terminalis (BNST), the medial preoptic hypothalamus (MPOA), the 

medial amygdala (MeA), and the ventrolateral nucleus of the ventromedial hypothalamus.
151,163–168 All but ERβ are expressed in the arcuate nucleus, which regulates homeostasis 

including feeding and energy balance.169 Extensive analysis of ERα, ERβ, and PR 

expression describes signal throughout the cortex and in midbrain areas, such as the ventral 

tegmental area (VTA), substantia nigra (SNc), periaqueductal gray (PAG), and raphe.
163,164,170–173 Thus, sex differences in reward processing and reward-seeking behavior may 

Manoli and Tollkuhn Page 9

Ann N Y Acad Sci. Author manuscript; available in PMC 2019 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



be controlled by the effects of SR function in VTA- and SNc-associated dopaminergic 

pathways, while expression in the PAG may underlie sex differences in pain processing and 

analgesia. Similarly, serotonergic projections from raphe nuclei have ramifications 

throughout the brain, and widespread effects of such neuromodulation may underlie sex 

differences in fear and anxiety behaviors, as well as stress-sensitivity and the activation of 

the hypothalamic–pituitary–adrenal axis.174 AR is also expressed in the cortex, particularly 

in the primary visual cortex and prefrontal cortex.175 These four receptors are present in the 

suprachiasmatic nucleus of the hypothalamus, which regulates circadian rhythm, allowing 

gonadal hormones to directly influence daily fluctuations in the adrenal output, sleep and 

mood.176 Finally, ERα, ERβ, and AR are found in astrocytes and endothelial cells,176,177 

while ERβ has anti-inflammatory effects in microglia.178 There are still few studies 

quantifying the co-expression of these receptors or detailing the ontogeny of their 

expression. RNA-seq experiments and fluorescent double in situ hybridization will provide 

further insight into the shared sites of action of SRs, pinpoint novel hormone-responsive 

populations, and classify the cell types that express gonadal hormone receptors.

In humans and monkeys, ERα and ERβ are expressed in similar areas as in mice, including 

high levels in the hypothalamus and amygdala and lower expression in the hippocampus and 

cortex, particularly the temporal cortex.179 ERβ is more prominent in the cortex compared to 

the hypothalamus, with significantly higher levels of expression in the deep layers of the 

temporal and entorhinal cortex, suggesting that ERβ is the principal modulator of estrogen 

effects on cognition in humans.180 AR is similarly expressed in the hypothalamus, 

amygdala, and temporal cortex, as well as the diagonal band of Broca.181

Sex differences in SR expression and the onset of SR expression during brain development 

have not been well described in humans,182 and indeed these receptors are only minimally 

detected in human brain transcriptome studies. Focused gene expression analyses in 

subcortical areas rich in SRs may therefore identify downstream genes regulated by 

hormone receptors that show a sex bias in expression. One such region, the accessory basal 

nucleus of the amygdala, is larger in primates compared with rodents and sends projections 

to the hippocampus and entorhinal cortex.179 At a more general level, sex-specific processes 

in the neural circuits underlying dimorphic behavior can arise from the differentiation of 

these pathways at different points183 (Fig. 3). Better understanding of where hormone 

receptors are expressed in humans, when expression is initiated during development, and the 

connectivity of these regions is necessary to understand how gonadal hormones can specify 

unique developmental trajectories in males and females.

As discussed above, surges in testosterone during early development mediate male-specific 

aspects of early brain development and differentiation. Lasting changes in gene expression 

programmed by such developmental hormone surges or perturbations during hormone-

mediated sexual differentiation of the brain may therefore contribute to the male bias 

observed in some neuropsychiatric disorders. Despite limited knowledge of the extent of SR 

expression in the human brain, sex differences in specific syndromes may be linked to 

hypothalamic dysfunction stemming from abnormal activity or development in individual 

nuclei. For example, sex differences in impulsivity in the form of aggression and 

hypersexual behavior seen in neurodevelopmental conditions such as ASD are thought to 
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arise, in part, as a consequence of SR-regulated sex dimorphisms in hypothalamic nuclei that 

control reproductive drive and contribute to affective state.184 Similarly, it has been well 

documented that males and females differ in patterns of activation in the amygdala in 

response to acute stress, and sex differences in the sensitivity of the amygdala to chronic 

stress, as well as in the connectivity and function of corticoamygadlar pathways, is thought 

to underlie aspects of the dramatic sex differences in the incidence and presentation of 

depression and anxiety.185–187 In addition, sex differences in the function and connectivity 

of serotonergic projections from the raphe nuclei throughout the brain also likely contribute 

to the dimorphisms seen in mood and anxiety disorders, as well as the response to 

medications that act on these pathways.188–190 Finally, the dense interconnectivity of reward 

pathways with frontal cortical circuitry is involved in attention, planning, and other aspects 

of cognition and may contribute to sex differences in the incidence and presentation of 

ADHD, as well as schizophrenia.191–193 In a similar manner, it is likely that sex differences 

in midbrain dopaminergic signaling underlies some of the sex differences in patterns of drug 

abuse and addiction, as well as the difference between the sexes in their response to 

antipsychotic medications.194–196

Integrating patient sequencing studies and patient symptoms to link genes 

to pathology

As the list of syndromic neuropsychiatric disorders––those caused by mutations in specific 

genes––continues to grow, deep phenotypic analyses of the discrete patterns of deficits 

caused by disruption of individual genes will help to elucidate the developmental and 

molecular programs that underlie specific and shared neural processes. Most 

neuropsychiatric conditions are thought to occur as a consequence of the interactions of 

environmental risk factors with genetically specified developmental sensitivity. The advent 

of high-throughput sequencing led to an explosion of patient-sequencing studies that 

provided fundamental insight into the developmental origins of psychiatric disorders. We 

will now examine the findings in ASD and schizophrenia to discuss the possible 

mechanisms by which epigenetic regulation of neural development may interact with 

pathways for sexual differentiation in the nervous system.

Using a wide range of techniques to examine patterns of mutations associated with 

neuropsychiatric conditions, culminating recently with whole-exome sequencing of patients 

and their parents and siblings to identify de novo and rare coding mutations, many studies 

have led to the identification of genes whose mutation correlates with the occurrence of 

ASD and schizophrenia, as well as depression and bipolar disorder (reviewed in Refs. 
197–201). Whole-genome sequencing is now extending this work to identify noncoding 

mutations associated with disease.202,203 These studies are likely to identify regulatory 

elements that direct specific aspects of brain development and function and may provide 

insight into the majority of disease cases, which have no currently known genetic origin. 

With regards to ASD in particular, in addition to implicating neural specific processes, 

including synaptic structure and neuronal excitability, these studies revealed a critical role 

for genes implicated in chromatin and transcriptional regulation in the pathogenesis of these 

disorders66,197,200,204 (Fig. 4). Integrating patient genome–sequencing studies with human 
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gene expression and epigenomic data has identified key regulatory nodes and pathways 

highlighting the importance of chromatin regulation in brain development and function.
66,197,200,204–213

ASD and schizophrenia: shared genes but distinct trajectories?

Recent evidence suggests an overlap in the genetic risks for ASD and schizophrenia with 

regard to rare copy number variants and de novo mutation events, particularly for genes 

involved in synaptic function and immune regulation, though the contribution of shared 

common genetic risk between these disorders is less clear.214–216 Like ASD, the incidence 

and presentation of schizophrenia shows a significant difference between males and females.
217 Males typically present earlier in adolescence with more severe symptoms and poorer 

outcomes, suggesting that fundamental sex differences in the developing brain contribute to 

the onset and pattern of deficits. However, despite some overlap in the mechanisms 

contributing to ASD and schizophrenia and aspects of the behavioral and cognitive deficits 

with which they present, the dramatic difference in their trajectories illustrates the central 

role of distinct developmental periods.

As discussed above, ASD is typically diagnosed early in childhood, suggesting disruptions 

of early developmental programs in the brain that result in deficits at the earliest stages of 

life. Consistent with this hypothesis and the identification of multiple genes involved in 

chromatin regulation and structure as risk alleles, recent work has identified genome-wide 

alterations in the regulation of noncoding RNAs, patterns of histone modification, and 

higher-order chromatin structure in tissue from patients with ASD.211,213,218,219 In contrast, 

the majority of symptoms in schizophrenia evolve during adolescence, suggesting that 

distinct developmental programs or mechanisms that are activated by the onset of puberty 

may play roles in the pathogenesis.220 The initiation of developmental programs following 

the onset of puberty occurs via SR-dependent and SR-independent pathways, both of which 

contribute to the restructuring and development of the nervous system for adult and sexually 

dimorphic behaviors. A hallmark of these processes that occurs following the initiation of 

these pathways at the onset of puberty is, for example, the elimination of synapses in 

regions, including the prefrontal cortex, that continues throughout adolescence and into early 

adulthood.221,222 Consistent with these observations at the cellular level, functional studies 

demonstrate that cortical gray matter volume peaks before adolescence and then slowly 

declines until reaching its adult volume.223 Such synaptic pruning is thought to achieve the 

balance of excitatory and inhibitory activity in adult cortical regions, with adult patterns of 

inhibitory activity in prefrontal cortical regions implicated as an essential part of network 

dynamics and synchronized activity thought to underlie cognition and cortical processing.
224,225 An intriguing additional mechanism for sex differences in the incidence and 

presentation of psychiatric illnesses during adolescence is the role of microglia in the 

maturation and pruning that occurs during this adolescent period and the sex differences in 

gene expression that suggest additional dimorphisms downstream of their activity.226,227 

Thus, the developmental programs initiated by the onset of puberty that persist throughout 

adolescence and into early adulthood represent fundamental programs of reorganization that 

may unmask or create new substrates for the neuropathology that underlies adult 

presentations of psychiatric illnesses.228
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Intriguingly, recent work suggests shared common genetic overlap in social communication 

difficulties and both ASD and schizophrenia but distinct patterns in the relationship between 

genetic traits and each disorder, largely consistent with the onset of clinical symptoms.216 

Thus, while the sex differences in ASD may be a consequence of the early sex 

differentiation of the brain during embryonic and perinatal development, those observed in 

schizophrenia are likely a consequence of the regulatory epigenetic landscape established 

during this period but only activated by the onset of puberty. In this context, sex differences 

observed in the onset and presentation of schizophrenia could arise either from the direct 

activation of genes in a sexually dimorphic manner by gonadal hormones or through signals 

in adolescence common to both sexes acting on poised sexually dimorphic programs 

established early in development (Fig. 2).

Consistent with both models, sequencing studies of sex-biased gene expression in regions of 

the human brain at distinct developmental time points reveals limited overlap between sex-

biased genes early in development and in adolescence and an enrichment for genes 

implicated in neuropsychiatric illness in those with a male expression bias.229 Future studies 

will undoubtedly reveal whether additional sets of mutations associated with schizophrenia 

are enriched in regulatory regions that mediate aspects of gene regulation specifically during 

adolescence, thus contributing to the developmental window during which symptoms and 

sex differences manifest.202,230–235

Sex differences and stress: intersection at the level of DNA

As a final example of how such regional regulation of sexually dimorphic differentiation of 

the nervous system may contribute to sex differences in neuropsychiatric illness, we 

consider role of early life stress in the later onset of depression. Women have twice the 

lifetime risk of developing depression compared with men and appear to experience 

symptoms that are more severe and diverse.236,237 Like many other major neuropsychiatric 

conditions, major depressive disorder typically evolves during early adolescence, with an 

earlier and distinct presentation in girls compared with boys.238,239 This suggests that sex-

specific pathways that regulate mood are activated by the onset of puberty and may intersect 

with stress response pathways to contribute to gender-specific symptoms.240,241

Increasing evidence supports a role for epigenetic changes in the pathogenesis of depression, 

particularly in response to early-life stress. The interactions with stress signaling and the 

pathways for sex differentiation suggest a mechanism by which the activation of stress 

pathways may act sex-specifically to control the response to chronic stress.184,239,242 These 

findings are supported at the gene regulatory level by recent studies on cross talk between 

SRs and glucocorticoid receptor (GR). In response to stress, the adrenal glands release 

glucocorticoid hormones: cortisol in humans and corticosterone (CORT) in rodents. In the 

brain, CORT binds to both glucocorticoid (GR) and mineralocorticoid (MR) receptors. MR 

and GR have a highly homologous DNA-binding domain but possess different affinities for 

CORT: MR has a very high affinity of 0.5 nM, while GR affinity is about 10-fold lower.243 

Thus, MR is thought to respond to the onset of stress, while GR responds to increasing 

levels of CORT to end the stress reaction and promote memory consolidation,244 although a 

recent in vivo study found that these receptors heterodimerize in response to acute stress.245 
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Both receptors are expressed in the hippocampus and lateral septum, while GR is found in 

many other areas, including the central amygdala, paraventricular hypothalamus, and 

prefrontal cortex.246,247

The DNA-binding domains of GR and MR are homologous to those of AR and PR; 

therefore, all four of these receptors can bind the same recognition sequences.143 ChIP-seq 

data from castration-resistant prostate cancer (CRPC) has shown that half of AR occupancy 

sites are bound by GR in dexamethasone-treated cells and that GR can substitute for AR to 

regulate a subset of AR transcriptional programs.248 These observations reveal a mechanism 

by which stress can alter sexual differentiation of the brain. For example, FK506-binding 

protein 5 (FKBP5) is a GR target gene and co-factor that that has been implicated in 

depression, posttraumatic stress disorder (PTSD), and anxiety.249 AR directly increases 

FKBP expression in the prostate through multiple distal and intronic enhancers,250,251 but 

regulation of FKBP5 by testosterone signaling in the brain has not yet been explored. GR 

recruitment can also modify chromatin to facilitate binding by other transcription factors in a 

process known as assisted loading.252 ChIP-seq studies have demonstrated that GR increases 

chromatin accessibility to modulate ERα binding to DNA through AP-1 sites.253,254 This 

could potentially lead to new estrogen-responsive gene programs after a period of stress. 

Taken together, these studies suggest that stress can directly alter regulation of gene 

expression by gonadal hormones in the brain (Fig. 5).

Intriguingly, hypermethylation of the GR locus has been observed in hippocampal tissues 

from males with a history of abuse who completed suicide.255,256 Both sexes show changes 

in DNA methylation in immune-related genes in the context of PTSD, while some sex 

differences are observed in non-neuronal cell types in the setting of depression,257,258 

highlighting a role for epigenetic changes in mediating long-term pathology via cell type–

specific mechanisms. Indeed, multiple studies have already identified heterogeneity in 

patterns of methylation across neuronal populations.259,260 Thus, pathways induced by 

chronic stress are likely to interact both with mechanisms that mediate long term, sex-

specific patterns of gene regulation across the genome, as well as direct activation of targets 

of sex hormone regulation to mediate the pathogenesis of depression and PTSD.

Conclusions

In summary, epigenetic mechanisms likely mediate sex-specific differentiation in the 

nervous system at every stage of development. As these pathways elaborate, the impact of 

genetic and environmental factors that contribute to psychiatric illness can thus have distinct 

effects in either sex, contributing to sex differences in the time of presentation, pattern of 

symptoms, or severity of illness. As we continue to understand the specific developmental 

programs and neural process that mediate sex-specific differentiation and function in the 

brain at particular developmental time-points, we will gain deeper insights into how specific 

mutations sensitize individuals to distinct neuropsychiatric conditions. Although we are not 

yet capable of developing treatments that target specific epigenetic mechanisms or sex-

specific developmental processes to ameliorate the symptoms of any psychiatric illness, 

understanding how these mechanisms contribute to these conditions in both sexes is critical 

to the future of treatment in mental health.
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Figure 1. 
Intersection of hormone surges with stages of brain development and maturation. Major 

events in neural development are depicted during human gestation (weeks) and into 

adulthood (years). Fluctuations in hormone levels intersect with these events in a sex-

specific fashion; critical periods for sexual differentiation of the brain are boxed in orange. 

Male testosterone levels (blue line) begin to rise during the eighth week of gestation as the 

testes mature, peak around week 16, and decline after week 24. Testosterone levels spike 

again in infancy with a peak around 1–3 months and then remain flat until the onset of 

puberty. In contrast, in females, the ovaries are largely inactive during gestation and begin to 

secrete estradiol (red line) and progesterone during puberty. There is also evidence of 

estradiol secretion in female infants, but the exact levels and duration are not well described.
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Figure 2. 
Gene regulatory strategies for achieving sex-biased gene expression. Sex differences in gene 

expression can be patterned by differential exposure to gonadal hormones during early life 

or puberty. Such differences can arise either from epigenetic events where lasting changes in 

chromatin state are established by transient exposure to hormone or through the induction of 

a trans-acting factor. (A) During developmental hormone exposure (mid-gestation or 

perinatal), ligand-bound steroid hormone receptors induce an active chromatin state (green 

peak) on an enhancer (grey oval), thereby causing a gene to be expressed more highly in 

males. (B) Alternatively, a chromatin modifier, co-regulator, or transcription factor may be 

present in one sex or the other; here, this scenario is depicted in females. The effects of early 

hormone signaling may not become apparent until puberty. (C) Male hormones prime a gene 

for later expression during adolescence (yellow peak indicates poised enhancer). (D) 

Cycling hormones in adolescent and adult females regulate gene expression acutely in the 

presence of estradiol or progesterone. A ligand-bound ERα homodimer is depicted in red.
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Figure 3. 
Sex-specific function in neural circuits and effects of mutations. Sex-specific differentiation 

in the nervous system may occur at different points in neural circuits to produce gender-

typical behaviors. (A) A mutation may therefore alter expression of a gene that is expressed 

in a sex-specific manner in a brain region, thereby changing its output to cause phenotypes 

in only one sex. (B) Alternatively, a mutation may produce different effects in the two sexes 

non-cell autonomously by affecting the function of a region functionally upstream of sex-

specific circuitry to cause distinct phenotypes in each sex. (C) Finally, functional disruption 

of a downstream behavioral output region that receives sexually dimorphic input can also 

produce a different effect in the two sexes; here, the mutation changes the response of 

neurons that receive more input in females compared with males.
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Figure 4. 
Mechanisms of gene regulation and effects of disease-associated mutations. Genes 

implicated in cell-specific neuronal function may (A) encode proteins that are expressed in 

distinct cell types or (B) regulate chromatin structure to control patterns of the expression of 

many genes in specify distinct cell types . (C) Profound phenotypes may arise from a loss-

of-function mutation (LoF) in a coding sequence of a broadly expressed gene. (D) Mutations 

in a chromatin regulatory factor affect gene expression in trans by changing chromatin state 

at multiple target genes, thereby resulting in dysregulation of gene expression but not 

complete LoF. (E) Alternatively, a mutation in a regulatory element could alter spatial or 

temporal aspects of gene expression, effectively causing a LoF in a specific context, such as 

a distinct cell type. Active chromatin states are depicted in green in wild-type individuals 

and attenuated to a yellow-green when the chromatin regulator is not functional. (F) Finally, 

a mutation in an enhancer of a chromatin regulator can lead to aberrant chromatin patterning 
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in only a subset of neurons or developmental stages, resulting in a comparatively mild 

phenotype.
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Figure 5. 
Cross talk between gonadal hormone signaling and stress response. (A) In the classical 

model of nuclear receptor action, there is no binding of AR to its consensus androgen 

response elements (ARE) in the absence of ligand. (B) When testosterone is present, AR 

homodimerizes and binds AREs, but can also bind glucocorticoid response elements (GREs) 

that are typically responsive to CORT. (C) Conversely, in the presence of CORT, GR can 

both activate its own GRE targets and bind AREs to activate testosterone-responsive genes. 

GR can also open (inaccessible chromatin (D) through transient binding to non-consensus 
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sites, and € recruitment of chromatin-remodeling machinery. (F) This action reveals 

additional binding sites that can later be bound by ERα tethered to AP-1.
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